Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2014

Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation

  • Sebastian Daum , Daniela Krüger , Annette Meister , Jan Auerswald , Simone Prinz , John A.G. Briggs and Kirsten Bacia EMAIL logo
From the journal Biological Chemistry

Abstract

As shape transformations of membranes are vital for intracellular trafficking, it is crucial to understand both the mechanics and the biochemistry of these processes. The interplay of these two factors constitutes an experimental challenge, however, because biochemical experiments are not tailored to the investigation of mechanical processes, and biophysical studies using model membranes are not capable of emulating native biological complexity. Reconstituted liposome-based model systems have been widely used for investigating the formation of transport vesicles by the COPII complex that naturally occurs at the endoplasmic reticulum. Here we have revisited these model systems, to address the influence of lipid composition, GTP hydrolyzing conditions and mechanical perturbation on the experimental outcome. We observed that the lipid-dependence of COPII-induced membrane remodeling differs from that predicted based on the lipid-dependence of COPII membrane binding. Under GTP non-hydrolyzing conditions, a structured coat was seen while GTP-hydrolyzing conditions yielded uncoated membranes as well as membranes coated by a thick protein coat of rather unstructured appearance. Detailed up-to-date protocols for purifications of Saccharomyces cerevisiae COPII proteins and for reconstituted reactions using these proteins with giant liposomes are also provided.


Corresponding author: Kirsten Bacia, HALOmem, University of Halle, Kurt-Mothes-Strasse 3, 06120 Halle, Germany, e-mail:

Acknowledgments

We thank Gerd Hause for his support with electron microscopy at the University of Halle, Karin Breunig and Markus Pietzsch for advice concerning yeast cell culture, Randy Schekman and Bob Lesch for protocols, expression strains and discussions and Claudia Müller for technical assistance. Financial support from the Deutsche Forschungsgemeinschaft within Graduiertenkolleg 1026, from the Bundesministerium für Bildung und Forschung (FKZ 03Z2HN22) and from the state of Saxony-Anhalt (Landesgraduiertenfoerderung and European Regional Development Grants 124112001 and 1241090001) is gratefully acknowledged.

Conflict of interest statement

Funding: Bundesministerium für Bildung und Forschung, (Grant/Award Number: ‘03Z2HN22’) Deutsche Forschungsgemeinschaft, (Grant/Award Number: ‘GRK 1026’). State of Saxony-Anhalt (Landesgraduiertenförderung and <softenter;European Regional Developments (Grant/Award Numbers 124112001 and 1241090001).

References

Adolf, F., Herrmann, A., Hellwig, A., Beck, R., Brugger, B., and Wieland, F.T. (2013). Scission of COPI and COPII vesicles is independent of GTP hydrolysis. Traffic. 14, 922–932.10.1111/tra.12084Search in Google Scholar

Akaaboune, M., Grady, R.M., Turney, S., Sanes, J.R., and Lichtman, J.W. (2002). Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron. 34, 865–876.10.1016/S0896-6273(02)00739-0Search in Google Scholar

Antonny, B., Madden, D., Hamamoto, S., Orci, L., and Schekman, R. (2001). Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537.10.1038/35078500Search in Google Scholar

Bacia, K., Futai, E., Prinz, S., Meister, A., Daum, S., Glatte, D., Briggs, J.A.G., and Schekman, R. (2011). Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 1, 17.10.1038/srep00017Search in Google Scholar

Barlowe, C. (1995). COPII: a membrane coat that forms endoplasmic reticulum-derived vesicles. FEBS Lett. 369, 93–96.10.1016/0014-5793(95)00618-JSearch in Google Scholar

Barlowe, C. (1997). Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J. Cell Biol. 139, 1097–1108.10.1083/jcb.139.5.1097Search in Google Scholar

Barlowe, C., d’Enfert, C., and Schekman, R. (1993). Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268, 873–879.10.1016/S0021-9258(18)54015-1Search in Google Scholar

Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M., and Schekman, R. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907.10.1016/0092-8674(94)90138-4Search in Google Scholar

Bashkirov, P.V., Akimov, S.A., Evseev, A.I., Schmid, S.L., Zimmerberg, J., and Frolov, V.A. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286.10.1016/j.cell.2008.11.028Search in Google Scholar PubMed PubMed Central

Bi, X., Corpina, R.A., and Goldberg, J. (2002). Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277.10.1038/nature01040Search in Google Scholar PubMed

Bi, X., Mancias, J.D., and Goldberg, J. (2007). Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell. 13, 635–645.10.1016/j.devcel.2007.10.006Search in Google Scholar

Boucrot, E., Pick, A., Camdere, G., Liska, N., Evergren, E., McMahon, H.T., and Kozlov, M.M. (2012). Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136.10.1016/j.cell.2012.01.047Search in Google Scholar

Brandizzi, F. and Barlowe, C. (2013). Organization of the ER-Golgi interface for membrane traffic control. Nature reviews. Mol. Cell Biol. 14, 382–392.10.1038/nrm3588Search in Google Scholar

Bromley, E.H., Kuwada, N.J., Zuckermann, M.J., Donadini, R., Samii, L., Blab, G.A., Gemmen, G.J., Lopez, B.J., Curmi, P.M., Forde, N.R., et al. (2009). The Tumbleweed: towards a synthetic proteinmotor. HFSP J. 3, 204–212.10.2976/1.3111282Search in Google Scholar

Cai, H., Yu, S., Menon, S., Cai, Y., Lazarova, D., Fu, C., Reinisch, K., Hay, J.C., and Ferro-Novick, S. (2007). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944.10.1038/nature05527Search in Google Scholar

Futai, E., Hamamoto, S., Orci, L., and Schekman, R. (2004). GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J. 23, 4146–4155.10.1038/sj.emboj.7600428Search in Google Scholar

Heinze, K.G., Costantino, S., De Koninck, P., and Wiseman, P.W. (2009). Beyond photobleaching, laser illumination unbinds fluorescent proteins. J. Phys. Chem. B 113, 5225–5233.10.1021/jp8060152Search in Google Scholar

Huang, M., Weissman, J.T., Beraud-Dufour, S., Luan, P., Wang, C., Chen, W., Aridor, M., Wilson, I.A., and Balch, W.E. (2001). Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J. Cell Biol. 155, 937–948.10.1083/jcb.200106039Search in Google Scholar

Karatekin, E., Sandre, O., Guitouni, H., Borghi, N., Puech, P.H., and Brochard-Wyart, F. (2003). Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 84, 1734–1749.10.1016/S0006-3495(03)74981-9Search in Google Scholar

Kim, J., Hamamoto, S., Ravazzola, M., Orci, L., and Schekman, R. (2005). Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles. J. Biol. Chem. 28, 7758–7768.10.1074/jbc.M411091200Search in Google Scholar PubMed

Kuehn, M.J. and Schekman, R. (1997). COPII and secretory cargo capture into transport vesicles. Curr. Opin. Cell Biol. 9, 477–483.10.1016/S0955-0674(97)80022-1Search in Google Scholar

Lee, M.C., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., and Schekman, R. (2005). Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617.10.1016/j.cell.2005.07.025Search in Google Scholar

Liu, A.P. and Fletcher, D.A. (2009). Biology under construction: in vitro reconstitution of cellular function. Nature reviews. Mol. Cell Biol. 10, 644–650.10.1038/nrm2746Search in Google Scholar

Long, K.R., Yamamoto, Y., Baker, A.L., Watkins, S.C., Coyne, C.B., Conway, J.F., and Aridor, M. (2010). Sar1 assembly regulates membrane constriction and ER export. J. Cell Biol. 190, 115–128.10.1083/jcb.201004132Search in Google Scholar

Lord, C., Bhandari, D., Menon, S., Ghassemian, M., Nycz, D., Hay, J., Ghosh, P., and Ferro-Novick, S. (2011). Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186.10.1038/nature09969Search in Google Scholar

Lord, C., Ferro-Novick, S., and Miller, E.A. (2013). The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the Golgi. Cold Spring Harb. Perspect. Biol. 5. pii: a013367.Search in Google Scholar

Matsuoka, K. and Schekman, R. (2000). The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods 20, 417–428.10.1006/meth.2000.0955Search in Google Scholar

Matsuoka, K., Orci, L., Amherdt, M., Bednarek, S.Y., Hamamoto, S., Schekman, R., and Yeung, T. (1998). COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 9, 263–275.10.1016/S0092-8674(00)81577-9Search in Google Scholar

Miller, E.A., Beilharz, T.H., Malkus, P.N., Lee, M.C., Hamamoto, S., Orci, L., and Schekman, R. (2003). Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509.10.1016/S0092-8674(03)00609-3Search in Google Scholar

Neumuller, K.G., Elsayad, K., Reisecker, J.M., Waxham, M.N., and Heinze, K.G. (2010). Photounbinding of calmodulin from a family of CaM binding peptides. PloS one. 5, e14050.10.1371/journal.pone.0014050Search in Google Scholar PubMed PubMed Central

Oka, T. and Nakano, A. (1994). Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. J. Cell Biol. 124, 425–434.10.1083/jcb.124.4.425Search in Google Scholar PubMed PubMed Central

Saito, Y., Kimura, K., Oka, T., and Nakano, A. (1998). Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus. J. Biochem. 124, 816–823.10.1093/oxfordjournals.jbchem.a022185Search in Google Scholar PubMed

Salama, N.R., Yeung, T., and Schekman, R.W. (1993). The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J. 12, 4073–4082.10.1002/j.1460-2075.1993.tb06091.xSearch in Google Scholar PubMed PubMed Central

Salama, N.R., Chuang, J.S., and Schekman, R.W. (1997). Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217.10.1091/mbc.8.2.205Search in Google Scholar PubMed PubMed Central

Sanborn, J., Oglecka, K., Kraut, R.S., and Parikh, A.N. (2013). Transient pearling and vesiculation of membrane tubes under osmotic gradients. Faraday Discuss. 161, 167–176; discussion 273–303.10.1039/C2FD20116JSearch in Google Scholar PubMed

Schwille, P. and Diez, S. (2009). Synthetic biology of minimal systems. Crit. Rev. Chem. Mol Biol. 44, 223–242.10.1080/10409230903074549Search in Google Scholar PubMed

Settles, E.I., Loftus, A.F., McKeown, A.N., and Parthasarathy, R. (2010). The vesicle trafficking protein Sar1 lowers lipid membrane rigidity. Biophys. J. 99, 1539–1545.10.1016/j.bpj.2010.06.059Search in Google Scholar PubMed PubMed Central

Supek, F., Madden, D.T., Hamamoto, S., Orci, L., and Schekman, R. (2002). Sec16p potentiates the action of COPII proteins to bud transport vesicles. J. Cell Biol. 158, 1029–1038.10.1083/jcb.200207053Search in Google Scholar PubMed PubMed Central

Venditti, R., Wilson, C., and De Matteis, M.A. (2014). Exiting the ER: what we know and what we don’t. Trends Cell Biol. 24, 9–18.10.1016/j.tcb.2013.08.005Search in Google Scholar PubMed

Vetter, I.R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.10.1126/science.1062023Search in Google Scholar PubMed

Yamanushi, T., Hirata, A., Oka, T., and Nakano, A. (1996). Characterization of yeast sar1 temperature-sensitive mutants, which are defective in protein transport from the endoplasmic reticulum. J Biochem. 120, 452–458.10.1093/oxfordjournals.jbchem.a021432Search in Google Scholar PubMed

Zanetti, G., Pahuja, K.B., Studer, S., Shim, S., and Schekman, R. (2012). COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28.10.1038/ncb2390Search in Google Scholar PubMed

Zanetti, G., Prinz, S., Daum, S., Meister, A., Schekman, R., Bacia, K., and Briggs, J.A. (2013). The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2, e00951.10.7554/eLife.00951.018Search in Google Scholar

Zhu, T.F., Adamala, K., Zhang, N., and Szostak, J.W. (2012). Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Nat. Acad. Sci. USA 109, 9828–9832.10.1073/pnas.1203212109Search in Google Scholar PubMed PubMed Central

Received: 2014-2-5
Accepted: 2014-6-12
Published Online: 2014-7-8
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0117/html
Scroll to top button