Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 395, Issue 7-8


Generic tools for conditionally altering protein abundance and phenotypes on demand

Frederik Faden
  • Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle/Saale, Germany
  • ScienceCampus Halle – Plant-based Bioeconomy, D-06120 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Mielke
  • Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle/Saale, Germany
  • ScienceCampus Halle – Plant-based Bioeconomy, D-06120 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter Lange
  • Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle/Saale, Germany
  • ScienceCampus Halle – Plant-based Bioeconomy, D-06120 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nico Dissmeyer
  • Corresponding author
  • Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle/Saale, Germany
  • ScienceCampus Halle – Plant-based Bioeconomy, D-06120 Halle/Saale, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-08 | DOI: https://doi.org/10.1515/hsz-2014-0160


Conditional gene expression and modulating protein stability under physiological conditions are important tools in biomedical research. They led to a thorough understanding of the roles of many proteins in living organisms. Current protocols allow for manipulating levels of DNA, mRNA, and of functional proteins. Modulating concentrations of proteins of interest, their post-translational processing, and their targeted depletion or accumulation are based on a variety of underlying molecular modes of action. Several available tools allow a direct as well as rapid and reversible variation right on the spot, i.e., on the level of the active form of a gene product. The methods and protocols discussed here include inducible and tissue-specific promoter systems as well as portable degrons derived from instable donor sequences. These are either constitutively active or dormant so that they can be triggered by exogenous or developmental cues. Many of the described techniques here directly influencing the protein stability are established in yeast, cell culture and in vitro systems only, whereas the indirectly working promoter-based tools are also commonly used in higher eukaryotes. Our major goal is to link current concepts of conditionally modulating a protein of interest’s activity and/or abundance and approaches for generating cell and tissue types on demand in living, multicellular organisms with special emphasis on plants.

This article offers supplementary material which is provided at the end of the article.

Keywords: conditional mutants; degron; expression control; inducible phenotypes; N-end rule pathway; targeted protein degradation


  • Amon, A. (1997). Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast. EMBO J. 16, 2693–2702.CrossrefGoogle Scholar

  • Andersen, S.U., Cvitanich, C., Hougaard, B.K., Roussis, A., Gronlund, M., Jensen, D.B., Frokjaer, L.A., and Jensen, E.O. (2003). The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol. Plant Microbe. Interact. 16, 1069–1076.CrossrefGoogle Scholar

  • Aoyama, T. and Chua, N.H. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612.PubMedCrossrefGoogle Scholar

  • Armstrong, C.M. and Goldberg, D.E. (2007). An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods 4, 1007–1009.PubMedCrossrefGoogle Scholar

  • Avila, J., Nieto, C., Canas, L., Benito, M.J., and Paz-Ares, J. (1993). Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. Plant J. 3, 553–562.PubMedCrossrefGoogle Scholar

  • Bachmair, A. and Varshavsky, A. (1989). The degradation signal in a short-lived protein. Cell 56, 1019–1032.CrossrefGoogle Scholar

  • Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186.Google Scholar

  • Bachmair, A., Becker, F., and Schell, J. (1993). Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent protein degradation. Proc. Natl. Acad. Sci. USA 90, 418–421.CrossrefGoogle Scholar

  • Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G., and Wandless, T.J. (2006). A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004.CrossrefPubMedGoogle Scholar

  • Banaszynski, L.A., Sellmyer, M.A., Contag, C.H., Wandless, T.J., and Thorne, S.H. (2008). Chemical control of protein stability and function in living mice. Nat. Med. 14, 1123–1127.PubMedCrossrefGoogle Scholar

  • Ben-Aroya, S., Coombes, C., Kwok, T., O’Donnell, K.A., Boeke, J.D., and Hieter, P. (2008). Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol. Cell 30, 248–258.Google Scholar

  • Berdeaux, R., Goebel, N., Banaszynski, L., Takemori, H., Wandless, T., Shelton, G.D., and Montminy, M. (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat. Med. 13, 597–603.Google Scholar

  • Bernal, J.A. and Venkitaraman, A.R. (2011). A vertebrate N-end rule degron reveals that Orc6 is required in mitosis for daughter cell abscission. J. Cell Biol. 192, 969–978.Google Scholar

  • Bonger, K.M., Chen, L.C., Liu, C.W., and Wandless, T.J. (2011). Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537.CrossrefPubMedGoogle Scholar

  • Boutros, M., Kiger, A.A., Armknecht, A., Kerr, K., Hild, M., Koch, B., Haas, S.A., Heidelberg Fly Array Consortium, Paro, R., and Perrimon, N. (2004). Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.Google Scholar

  • Brand, L., Horler, M., Nuesch, E., Vassalli, S., Barrell, P., Yang, W., Jefferson, R.A., Grossniklaus, U., and Curtis, M.D. (2006). A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol. 141, 1194–1204.Google Scholar

  • Caddick, M.X., Greenland, A.J., Jepson, I., Krause, K.P., Qu, N., Riddell, K.V., Salter, M.G., Schuch, W., Sonnewald, U., and Tomsett, A.B. (1998). An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat. Biotechnol. 16, 177–180.PubMedCrossrefGoogle Scholar

  • Campion, Y., Neel, H., Gostan, T., Soret, J., and Bordonne, R. (2010). Specific splicing defects in S. pombe carrying a degron allele of the Survival of Motor Neuron gene. EMBO J. 29, 1817–1829.CrossrefGoogle Scholar

  • Carmony, K.C. and Kim, K.B. (2012). PROTAC-induced proteolytic targeting. Methods Mol. Biol. 832, 627–638.Google Scholar

  • Carroll, C.W. and Morgan, D.O. (2002). The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat. Cell Biol. 4, 880–887.CrossrefGoogle Scholar

  • Caussinus, E., Kanca, O., and Affolter, M. (2012). Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19, 117–121.Google Scholar

  • Cheeseman, I.M., Brew, C., Wolyniak, M., Desai, A., Anderson, S., Muster, N., Yates, J.R., Huffaker, T.C., Drubin, D.G., and Barnes, G. (2001a). Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145.CrossrefGoogle Scholar

  • Cheeseman, I.M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D.G., and Barnes, G. (2001b). Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212.Google Scholar

  • Chen, S., Hofius, D., Sonnewald, U., and Bornke, F. (2003). Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant J. 36, 731–740.PubMedCrossrefGoogle Scholar

  • Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.Google Scholar

  • Choi, W.S., Jeong, B.C., Joo, Y.J., Lee, M.R., Kim, J., Eck, M.J., and Song, H.K. (2010). Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17, 1175–1181.PubMedCrossrefGoogle Scholar

  • Christie, J.M., Swartz, T.E., Bogomolni, R.A., and Briggs, W.R. (2002). Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J. 32, 205–219.PubMedCrossrefGoogle Scholar

  • Cohen, C., Scott, D., Miller, J., Zhang, J., Zhou, P., and Larson, J E. (2004). Transient in utero knockout (TIUKO) of C-MYC affects late lung and intestinal development in the mouse. BMC Devel. Biol. 4, 4.CrossrefGoogle Scholar

  • Cong, F., Zhang, J., Pao, W., Zhou, P., and Varmus, H. (2003). A protein knockdown strategy to study the function of β-catenin in tumorigenesis. BMC Mol. Biol. 4, 10.CrossrefGoogle Scholar

  • Craft, J., Samalova, M., Baroux, C., Townley, H., Martinez, A., Jepson, I., Tsiantis, M., and Moore, I. (2005). New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41, 899–918.Google Scholar

  • de Groot, R.J., Rumenapf, T., Kuhn, R.J., Strauss, E.G., and Strauss, J.H. (1991). Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc. Natl. Acad. Sci. USA 88, 8967–8971.CrossrefGoogle Scholar

  • Detterbeck, S., Morandini, P., Wetterauer, B., Bachmair, A., Fischer, K., and MacWilliams, H.K. (1994). The ‘prespore-like cells’ of Dictyostelium have ceased to express a prespore gene: analysis using short-lived beta-galactosidases as reporters. Development 120, 2847–2855.PubMedGoogle Scholar

  • Deveaux, Y., Peaucelle, A., Roberts, G.R., Coen, E., Simon, R., Mizukami, Y., Traas, J., Murray, J.A., Doonan, J.H., and Laufs, P. (2003). The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J. 36, 918–930.PubMedCrossrefGoogle Scholar

  • Dice, J.F. and Goldberg, A.L. (1975). Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl. Acad. Sci. USA 72, 3893–3897.Google Scholar

  • Dietrich, C.R., Han, G., Chen, M., Berg, R.H., Dunn, T.M., and Cahoon, E.B. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 54, 284–298.PubMedCrossrefGoogle Scholar

  • Dissmeyer, N. and Schnittger, A. (2011). The age of protein kinases. Methods Mol. Biol. 779, 7–52.Google Scholar

  • Dissmeyer, N., Nowack, M.K., Pusch, S., Stals, H., Inze, D., Grini, P.E., and Schnittger, A. (2007). T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell 19, 972–985.PubMedCrossrefGoogle Scholar

  • Dissmeyer, N., Weimer, A.K., Pusch, S., De Schutter, K., Alvim Kamei, C.L., Nowack, M.K., Novak, B., Duan, G.L., Zhu, Y.G., De Veylder, L., et al. (2009). Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21, 3641–3654.Google Scholar

  • Dohmen, R.J. and Varshavsky, A. (2005). Heat-inducible degron and the making of conditional mutants. Methods Enzymol. 399, 799–822.Google Scholar

  • Dohmen, R.J., Wu, P., and Varshavsky, A. (1994). Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276.Google Scholar

  • Dougan, D.A., Truscott, K.N., and Zeth, K. (2010). The bacterial N-end rule pathway: expect the unexpected. Mol. Microbiol. 76, 545–558.CrossrefPubMedGoogle Scholar

  • Fang, G., Yu, H., and Kirschner, M.W. (1999). Control of mitotic transitions by the anaphase-promoting complex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1583–1590.Google Scholar

  • Feaver, W.J., Huang, W., and Friedberg, E.C. (1999). The TFB4 subunit of yeast TFIIH is required for both nucleotide excision repair and RNA polymerase II transcription. J. Biol. Chem. 274, 29564–29567.Google Scholar

  • Fichtner, F., Urrea Castellanos, R., and Ulker, B. (2014). Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239, 921–939.Google Scholar

  • Folkes, L.K., Dennis, M.F., Stratford, M.R., Candeias, L.P., and Wardman, P. (1999). Peroxidase-catalyzed effects of indole-3-acetic acid and analogues on lipid membranes, DNA, and mammalian cells in vitro. Biochem. Pharmacol. 57, 375–382.PubMedCrossrefGoogle Scholar

  • Fu, X., Ng, C., Feng, D., and Liang, C. (2003). Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J. Cell Biol. 163, 21–26.Google Scholar

  • Gaj, T., Gersbach, C.A., and Barbas, C.F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405.PubMedCrossrefGoogle Scholar

  • Gallie, D.R. (2010). Regulated ethylene insensitivity through the inducible expression of the Arabidopsis etr1–1 mutant ethylene receptor in tomato. Plant Physiol. 152, 1928–1939.Google Scholar

  • Gardner, R.D., Poddar, A., Yellman, C., Tavormina, P.A., Monteagudo, M.C., and Burke, D.J. (2001). The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 157, 1493–1502.Google Scholar

  • Garoosi, G.A., Salter, M.G., Caddick, M.X., and Tomsett, A.B. (2005). Characterization of the ethanol-inducible alc gene expression system in tomato. J. Exp. Bot. 56, 1635–1642.CrossrefGoogle Scholar

  • Gatz, C., Frohberg, C., and Wendenburg, R. (1992). Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 2, 397–404.PubMedGoogle Scholar

  • Geimonen, E., Fernandez, I., Gavrilovskaya, I.N., and Mackow, E.R. (2003). Tyrosine residues direct the ubiquitination and degradation of the NY-1 hantavirus G1 cytoplasmic tail. J. Virol. 77, 10760–10868.CrossrefGoogle Scholar

  • Genschik, P., Criqui, M.C., Parmentier, Y., Derevier, A., and Fleck, J. (1998). Cell cycle-dependent proteolysis in plants. Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor mg132. Plant Cell 10, 2063–2076.Google Scholar

  • Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418.Google Scholar

  • Gibbs, D.J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G.M., Berckhan, S., Marin-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S.P., et al. (2014). nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379.CrossrefGoogle Scholar

  • Glover, B.J., Perez-Rodriguez, M., and Martin, C. (1998). Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125, 3497–3508.PubMedGoogle Scholar

  • Glover, B.J., Bunnewell, S., and Martin, C. (2004). Convergent evolution within the genus Solanum: the specialised anther cone develops through alternative pathways. Gene 331, 1–7.Google Scholar

  • Gómez-Mena, C., de Folter, S., Costa, M.M., Angenent, G.C., and Sablowski, R. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429–438.Google Scholar

  • Gonda, D.K., Bachmair, A., Wunning, I., Tobias, J.W., Lane, W.S., and Varshavsky, A. (1989). Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712.Google Scholar

  • Graciet, E., Mesiti, F., and Wellmer, F. (2010). Structure and evolutionary conservation of the plant N-end rule pathway. Plant J. 61, 741–751.CrossrefGoogle Scholar

  • Granger, C.L. and Cyr, R.J. (2000). Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210, 502–509.Google Scholar

  • Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414, 271–276.Google Scholar

  • Gregán, J., Van Laer, L., Lieto, L.D., Van Camp, G., and Kearsey, S.E. (2003). A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim. Biophys. Acta 1638, 179–186.Google Scholar

  • Guo, H.S., Fei, J.F., Xie, Q., and Chua, N.H. (2003). A chemical-regulated inducible RNAi system in plants. Plant J. 34, 383–392.PubMedCrossrefGoogle Scholar

  • Hackett, E.A., Esch, R.K., Maleri, S., and Errede, B. (2006). A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23, 333–349.CrossrefGoogle Scholar

  • Hannah, J. and Zhou, P.B. (2011). Maximizing target protein ablation by integration of RNAi and protein knockout. Cell Res. 21, 1152–1154.CrossrefPubMedGoogle Scholar

  • Hardy, C.F. (1996). Characterization of an essential Orc2p-associated factor that plays a role in DNA replication. Mol. Cell. Biol. 16, 1832–1841.Google Scholar

  • Harper, S.M., Neil, L.C., and Gardner, K.H. (2003). Structural basis of a phototropin light switch. Science 301, 1541–1544.Google Scholar

  • Hartwell, L.H. (1967). Macromolecule synthesis in temperature-sensitive mutants of yeast. J. Bacteriol. 93, 1662–1670.Google Scholar

  • Hartwell, L.H., Culotti, J., and Reid, B. (1970). Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl. Acad. Sci. USA 66, 352–359.CrossrefGoogle Scholar

  • Herm-Götz, A., Agop-Nersesian, C., Munter, S., Grimley, J.S., Wandless, T.J., Frischknecht, F., and Meissner, M. (2007). Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat. Methods 4, 1003–1005.CrossrefGoogle Scholar

  • Holland, A., Fachinetti, D., Han, J., and Cleveland, D.W. (2012). Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 109, E3350–E3357.Google Scholar

  • Houser, J.R., Ford, E., Chatterjea, S.M., Maleri, S., Elston, T.C., and Errede, B. (2012). An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae. Yeast 29, 519–530.CrossrefPubMedGoogle Scholar

  • Hwang, C.S., Shemorry, A., and Varshavsky, A. (2010). N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977.Google Scholar

  • Jakoby, M.J., Weinl, C., Pusch, S., Kuijt, S.J., Merkle, T., Dissmeyer, N., and Schnittger, A. (2006). Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. Plant Physiol. 141, 1293–1305.Google Scholar

  • Jungbluth, M., Renicke, C., and Taxis, C. (2010). Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst. Biol. 4, 176.CrossrefGoogle Scholar

  • Kanemaki, M.T. (2013). Frontiers of protein expression control with conditional degrons. Pflugers Arch. 465, 419–425.PubMedCrossrefGoogle Scholar

  • Kanemaki, M., Sanchez-Diaz, A., Gambus, A., and Labib, K. (2003). Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–724.Google Scholar

  • Kang, H.G., Fang, Y., and Singh, K.B. (1999). A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. Plant J. 20, 127–133.PubMedCrossrefGoogle Scholar

  • Kanke, M., Nishimura, K., Kanemaki, M., Kakimoto, T., Takahashi, T.S., Nakagawa, T., and Masukata, H. (2011). Auxin-inducible protein depletion system in fission yeast. BMC Cell Biol. 12, 8.CrossrefPubMedGoogle Scholar

  • Kannangara, R., Branigan, C., Liu, Y., Penfield, T., Rao, V., Mouille, G., Hofte, H., Pauly, M., Riechmann, J.L., and Broun, P. (2007). The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19, 1278–1294.Google Scholar

  • Kearsey, S.E. and Grégan, J. (2009). Using the DHFR heat-inducible degron for protein inactivation in Schizosaccharomyces pombe. Methods Mol. Biol. 521, 483–492.Google Scholar

  • Ketelaar, T., Allwood, E.G., Anthony, R., Voigt, B., Menzel, D., and Hussey, P.J. (2004). The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr. Biol. 14, 145–149.CrossrefGoogle Scholar

  • Kim, S.Y., Hong, C.B., and Lee, I. (2001). Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J. Plant Res. 114, 301–307.CrossrefGoogle Scholar

  • Kim, H.K., Kim, R.R., Oh, J.H., Cho, H., Varshavsky, A., and Hwang, C.S. (2014). The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158–169.Google Scholar

  • King, R.W., Deshaies, R.J., Peters, J.M., and Kirschner, M.W. (1996). How proteolysis drives the cell cycle. Science 274, 1652–1659.Google Scholar

  • Kirik, V., Simon, M., Wester, K., Schiefelbein, J., and Hulskamp, M. (2004). ENHANCER of TRY and CPC 2 (ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol. Biol. 55, 389–398.Google Scholar

  • Koo, J.C., Asurmendi, S., Bick, J., Woodford-Thomas, T., and Beachy, R.N. (2004). Ecdysone agonist-inducible expression of a coat protein gene from tobacco mosaic virus confers viral resistance in transgenic Arabidopsis. Plant J. 37, 439–448.PubMedCrossrefGoogle Scholar

  • Kreidenweiss, A., Hopkins, A.V., and Mordmuller, B. (2013). 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum. PLoS One 8, e78661.Google Scholar

  • Kubo, M., Imai, A., Nishiyama, T., Ishikawa, M., Sato, Y., Kurata, T., Hiwatashi, Y., Reski, R., and Hasebe, M. (2013). System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS One 8, e77356.Google Scholar

  • Kulemzina, I., Schumacher, M.R., Verma, V., Reiter, J., Metzler, J., Failla, A.V., Lanz, C., Sreedharan, V.T., Ratsch, G., and Ivanov, D. (2012). Cohesin rings devoid of Scc3 and Pds5 maintain their stable association with the DNA. PLoS Genet. 8, e1002856.Google Scholar

  • Labib, K., Tercero, J.A., and Diffley, J.F. (2000). Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647.Google Scholar

  • Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A., Perata, P., and van Dongen, J.T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422.Google Scholar

  • Lindner, K., Grégan, J., Montgomery, S., and Kearsey, S.E. (2002). Essential role of MCM proteins in premeiotic DNA replication. Mol. Biol. Cell 13, 435–444.CrossrefPubMedGoogle Scholar

  • Love, J., Scott, A.C., and Thompson, W.F. (2000). Technical advance: stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system. Plant J. 21, 579–588.Google Scholar

  • Maizel, A. and Weigel, D. (2004). Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J. 38, 164–171.CrossrefGoogle Scholar

  • Martinez, A., Sparks, C., Hart, C.A., Thompson, J., and Jepson, I. (1999). Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J. 19, 97–106.PubMedCrossrefGoogle Scholar

  • Masclaux, F., Charpenteau, M., Takahashi, T., Pont-Lezica, R., and Galaud, J.P. (2004). Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 364–369.Google Scholar

  • McIsaac, R.S., Silverman, S.J., McClean, M.N., Gibney, P.A., Macinskas, J., Hickman, M.J., Petti, A.A., and Botstein, D. (2011). Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 4447–4459.CrossrefGoogle Scholar

  • Melvin, A.T., Woss, G.S., Park, J.H., Dumberger, L.D., Waters, M.L., and Allbritton, N.L. (2013). A comparative analysis of the ubiquitination kinetics of multiple degrons to identify an ideal targeting sequence for a proteasome reporter. PLoS One 8, e78082.Google Scholar

  • Mett, V.L., Lochhead, L.P., and Reynolds, P.H. (1993). Copper-controllable gene expression system for whole plants. Proc. Natl. Acad. Sci. USA 90, 4567–4571.CrossrefGoogle Scholar

  • Mills, E. and Truong, K. (2013). Photoswitchable protein degradation: a generalizable control module for cellular function? Chem. Biol. 20, 458–460.CrossrefPubMedGoogle Scholar

  • Mogk, A., Schmidt, R., and Bukau, B. (2007). The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172.CrossrefGoogle Scholar

  • Moore, I., Samalova, M., and Kurup, S. (2006). Transactivated and chemically inducible gene expression in plants. Plant J. 45, 651–683.PubMedCrossrefGoogle Scholar

  • Muhua, L., Adames, N.R., Murphy, M.D., Shields, C.R., and Cooper, J.A. (1998). A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393, 487–491.Google Scholar

  • Müller, K., Siegel, D., Rodriguez Jahnke, F., Gerrer, K., Wend, S., Decker, E.L., Reski, R., Weber, W., and Zurbriggen, M.D. (2014). A red light-controlled synthetic gene expression switch for plant systems. Mol. Biosyst. Epub 12 Dec 2013. doi:10.1039/C3MB70579J.CrossrefGoogle Scholar

  • Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and Kanemaki, M. (2009). An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922.PubMedCrossrefGoogle Scholar

  • Ó’Maoiléidigh, D.S., Wuest, S.E., Rae, L., Raganelli, A., Ryan, P.T., Kwasniewska, K., Das, P., Lohan, A.J., Loftus, B., Graciet, E., et al. (2013). Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25, 2482–2503.CrossrefGoogle Scholar

  • Ouwerkerk, P.B., de Kam, R.J., Hoge, J.H., and Meijer, A.H. (2001). Glucocorticoid-inducible gene expression in rice. Planta 213, 370–378.Google Scholar

  • Paddison, P.J., Caudy, A.A., and Hannon, G.J. (2002). Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 1443–1448.CrossrefGoogle Scholar

  • Padidam, M., Gore, M., Lu, D.L., and Smirnova, O. (2003). Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res. 12, 101–109.CrossrefPubMedGoogle Scholar

  • Park, E.C., Finley, D., and Szostak, J.W. (1992). A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89, 1249–1252.CrossrefGoogle Scholar

  • Parsons, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W., Kane, P.M., Hughes, T.R., and Boone, C. (2004). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69.CrossrefPubMedGoogle Scholar

  • Passmore, L.A., McCormack, E.A., Au, S.W., Paul, A., Willison, K.R., Harper, J.W., and Barford, D. (2003). Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796.CrossrefGoogle Scholar

  • Payne, T., Clement, J., Arnold, D., and Lloyd, A. (1999). Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126, 671–682.Google Scholar

  • Pedley, K.F. and Martin, G.B. (2004). Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J. Biol. Chem. 279, 49229–49235.Google Scholar

  • Perrimon, P., Ni, J.-Q., and Perkins, L. (2010). In vivo RNAi: Today and Tomorrow. Cold Spring Harb. Perspect. Biol. 2, a003640. Epub 2010 Jun 9. doi: 10.1101/cshperspect.a003640.CrossrefGoogle Scholar

  • Pesin, J.A. and Orr-Weaver, T.L. (2008). Regulation of APC/C activators in mitosis and meiosis. Annu. Rev. Cell Dev. Biol. 24, 475–499.PubMedCrossrefGoogle Scholar

  • Peters, J.M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656.PubMedCrossrefGoogle Scholar

  • Piatkov, K.I., Brower, C.S., and Varshavsky, A. (2012). The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc. Natl. Acad. Sci. USA 109, E1839–E1847.Google Scholar

  • Piazzon, N., Schlotter, F., Lefebvre, S., Dodre, M., Mereau, A., Soret, J., Besse, A., Barkats, M., Bordonne, R., Branlant, C., et al. (2012). Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res. 41, 1255–1272.PubMedGoogle Scholar

  • Potuschak, T., Stary, S., Schlogelhofer, P., Becker, F., Nejinskaia, V., and Bachmair, A. (1998). PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl. Acad. Sci. USA 95, 7904–7908.Google Scholar

  • Prabha, C.R., Mukherjee, S., Raman, R., and Kulkarni, S. (2012). The ends and means of artificially induced targeted protein degradation. Appl. Microbiol. Biotechnol. 96, 1111–1123.PubMedCrossrefGoogle Scholar

  • Rajagopalan, S., Liling, Z., Liu, J., and Balasubramanian, M. (2004). The N-degron approach to create temperature-sensitive mutants in Schizosaccharomyces pombe. Methods 33, 206–212.CrossrefGoogle Scholar

  • Rakhit, R., Edwards, S.R., Iwamoto, M., and Wandless, T.J. (2011). Evaluation of FKBP and DHFR based destabilizing domains in Saccharomyces cerevisiae. Bioorg. Med. Chem. Lett. 21, 4965–4968.CrossrefGoogle Scholar

  • Rao, H., Uhlmann, F., Nasmyth, K., and Varshavsky, A. (2001). Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959.Google Scholar

  • Ren, Q., Liou, L.C., Gao, Q., Bao, X., and Zhang, Z. (2012). Bir1 deletion causes malfunction of the spindle assembly checkpoint and apoptosis in yeast. Front. Oncol. 2, 93.Google Scholar

  • Renicke, C., Schuster, D., Usherenko, S., Essen, L.O., and Taxis, C. (2013a). A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20, 619–626.CrossrefGoogle Scholar

  • Renicke, C., Spadaccini, R., and Taxis, C. (2013b). A tobacco etch virus protease with increased substrate tolerance at the P1’ position. PLos One 8, e67915.Google Scholar

  • Roberts, G.R., Garoosi, G.A., Koroleva, O., Ito, M., Laufs, P., Leader, D.J., Caddick, M.X., Doonan, J.H., and Tomsett, A.B. (2005). The alc-GR system: a modified alc gene switch designed for use in plant tissue culture. Plant Physiol. 138, 1259–1267.Google Scholar

  • Rodriguez, S. and Wolfang, M. (2012). Targeted chemical-genetic regulation of protein stability in vivo. Chem. Biol. 19, 391–398.CrossrefPubMedGoogle Scholar

  • Roslan, H.A., Salter, M.G., Wood, C.D., White, M.R., Croft, K.P., Robson, F., Coupland, G., Doonan, J., Laufs, P., Tomsett, A.B., et al. (2001). Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28, 225–235.CrossrefGoogle Scholar

  • Saijo, T. and Nagasawa, A. (2014). Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time. Plant Cell Rep. 33, 47–59.PubMedCrossrefGoogle Scholar

  • Saini, P., Eyler, D.E., Green, R., and Dever, T.E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121.Google Scholar

  • Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J. (2001). Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 98, 8554–8559.Google Scholar

  • Salter, M.G., Paine, J.A., Riddell, K.V., Jepson, I., Greenland, A.J., Caddick, M.X., and Tomsett, A.B. (1998). Characterisation of the ethanol-inducible alc gene expression system for transgenic plants. Plant J. 16, 127–132.CrossrefGoogle Scholar

  • Samalova, M., Brzobohaty, B., and Moore, I. (2005). pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J. 41, 919–935.Google Scholar

  • Schaarschmidt, S., Qu, N., Strack, D., Sonnewald, U., and Hause, B. (2004). Local induction of the alc gene switch in transgenic tobacco plants by acetaldehyde. Plant Cell Physiol. 45, 1566–1577.PubMedCrossrefGoogle Scholar

  • Schilmiller, A.L., Last, R.L., and Pichersky, E. (2008). Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 54, 702–711.PubMedCrossrefGoogle Scholar

  • Schneekloth, J.S. J., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., and Crews, C.M. (2004). Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–3754.CrossrefGoogle Scholar

  • Schnittger, A., Schobinger, U., Stierhof, Y.D., and Hulskamp, M. (2002). Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr. Biol. 12, 415–420.CrossrefPubMedGoogle Scholar

  • Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133.CrossrefGoogle Scholar

  • Sen, N., Sen, A., and Mackow, E.R. (2007). Degrons at the C terminus of the pathogenic but not the nonpathogenic hantavirus G1 tail direct proteasomal degradation. J. Virol. 81, 4323–4330.CrossrefGoogle Scholar

  • Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., et al. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405.Google Scholar

  • Speese, S.D., Trotta, N., Rodesch, C.K., Aravamudan, B., and Broadie, K. (2003). The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. Biol. 13, 899–910.PubMedCrossrefGoogle Scholar

  • Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D., and Yin, Z. (2005). Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep. 24, 86–94.CrossrefGoogle Scholar

  • Stary, S., Yin, X.J., Potuschak, T., Schlogelhofer, P., Nizhynska, V., and Bachmair, A. (2003). PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol. 133, 1360–1366.Google Scholar

  • Stegmeier, F., Visintin, R., and Amon, A. (2002). Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220.Google Scholar

  • Su, Y., Ishikawa, S., Kojima, M. and Liu, B. (2003). Eradication of pathogenic β-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc. Natl. Acad. Sci. USA 100, 12729–12734.Google Scholar

  • Su, X., Bernal, J.A., and Venkitaraman, A.R. (2008). Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat. Struct. Mol. Biol. 15, 1049–1058.Google Scholar

  • Suzuki, T. and Varshavsky, A. (1999). Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026.CrossrefPubMedGoogle Scholar

  • Sweetman, J.P., Chu, C., Qu, N., Greenland, A.J., Sonnewald, U., and Jepson, I. (2002). Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol. 129, 943–948.Google Scholar

  • Takahashi, T. and Komeda, Y. (1989). Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol. Gen. Genet. 219, 365–372.Google Scholar

  • Takahashi, T., Naito, S., and Komeda, Y. (1992). The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants – a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J. 2, 751–761.CrossrefGoogle Scholar

  • Takemoto, D. and Jones, D.A. (2005). Membrane release and destabilization of Arabidopsis RIN4 following cleavage by Pseudomonas syringae AvrRpt2. Mol. Plant Microbe Interact. 18, 1258–1268.Google Scholar

  • Takeuchi, J., Chen, H., Hoyt, M.A., and Coffino, P. (2008). Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. Biochem J. 410, 401–407.CrossrefPubMedGoogle Scholar

  • Tasaki, T., Mulder, L.C., Iwamatsu, A., Lee, M.J., Davydov, I.V., Varshavsky, A., Muesing, M., and Kwon, Y.T. (2005). A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25, 7120–7136.CrossrefPubMedGoogle Scholar

  • Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009). Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol. Syst. Biol. 5, 267.PubMedGoogle Scholar

  • Tercero, J.A., Labib, K., and Diffley, J.F. (2000). DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J. 19, 2082–2093.Google Scholar

  • Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665.Google Scholar

  • Ülker, B., Peiter, E., Dixon, D.P., Moffat, C., Capper, R., Bouché, N., Edwards, R., Sanders, D., Knight, H., and Knight, M.R. (2008). Getting the most out of publicly available T-DNA insertion lines. Plant J. 56, 665–677.CrossrefPubMedGoogle Scholar

  • Varshavsky, A. (1991). Naming a targeting signal. Cell 64, 13–15.CrossrefPubMedGoogle Scholar

  • Varshavsky, A. (2005). Ubiquitin fusion technique and related methods. Methods Enzymol. 399, 777–799.Google Scholar

  • Varshavsky, A. (2011). The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345.CrossrefGoogle Scholar

  • Vodenicharov, M.D. and Wellinger, R.J. (2006). DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol. Cell 24, 127–137.CrossrefGoogle Scholar

  • Wang, S., Wang, J.W., Yu, N., Li, C.H., Luo, B., Gou, J.Y., Wang, L.J., and Chen, X.Y. (2004). Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323–2334.CrossrefPubMedGoogle Scholar

  • Watase, G., Takisawa, H., and Kanemaki, M.T. (2012). Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr. Biol. 22, 343–349.Google Scholar

  • Weingartner, M., Criqui, M.C., Meszaros, T., Binarova, P., Schmit, A.C., Helfer, A., Derevier, A., Erhardt, M., Bogre, L., and Genschik, P. (2004). Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. Plant Cell 16, 643–657.CrossrefPubMedGoogle Scholar

  • Weinmann, P., Gossen, M., Hillen, W., Bujard, H., and Gatz, C. (1994). A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 5, 559–569.PubMedCrossrefGoogle Scholar

  • Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J.T., and Licausi, F. (2014). Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 6,3425. doi: 10.1038/ncomms4425.CrossrefGoogle Scholar

  • Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J.L., and Meyerowitz, E.M. (2006). Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117.CrossrefGoogle Scholar

  • Wester, K., Digiuni, S., Geier, F., Timmer, J., Fleck, C., and Hulskamp, M. (2009). Functional diversity of R3 single-repeat genes in trichome development. Development 136, 1487–1496.Google Scholar

  • Wielopolska, A., Townley, H., Moore, I., Waterhouse, P., and Helliwell, C. (2005). A high-throughput inducible RNAi vector for plants. Plant Biotechnol. J. 3, 583–590.PubMedCrossrefGoogle Scholar

  • Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483.PubMedCrossrefGoogle Scholar

  • Yang, C., Li, H., Zhang, J., Luo, Z., Gong, P., Zhang, C., Li, J., Wang, T., Zhang, Y., Lu, Y. et al. (2011). A regulatory gene induces trichome formation and embryo lethality in tomato. Proc. Natl. Acad. Sci. USA 108, 11836–11841.CrossrefGoogle Scholar

  • Yang, J., Ordiz, M.I., Semenyuk, E.G., Kelly, B., and Beachy, R.N. (2012). A safe and effective plant gene switch system for tissue-specific induction of gene expression in Arabidopsis thaliana and Brassica juncea. Transgenic Res. 21, 879–883.CrossrefGoogle Scholar

  • Yoshida, K., Kasai, T., Garcia, M.R., Sawada, S., Shoji, T., Shimizu, S., Yamazaki, K., Komeda, Y., and Shinmyo, A. (1995). Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 44, 466–472.Google Scholar

  • Zhang, Y., Yu, Z., Fu, X., and Liang, C. (2002). Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell 109, 849–860.CrossrefGoogle Scholar

  • Zhang, J., Zheng, N., and Zhou, P. (2003). Exploring the functional complexity of cellular proteins by protein knockout. Proc. Natl. Acad. Sci. USA 100, 14127–14132.CrossrefGoogle Scholar

  • Zhou, P. (2005). Targeted protein degradation. Curr. Opin. Chem. Biol. 9, 51–55.CrossrefPubMedGoogle Scholar

  • Zhou, P., Bogacki, R., McReynolds, L., and Howley, P.M. (2000). Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756.CrossrefPubMedGoogle Scholar

  • Zuo, J.R. and Chua, N.H. (2000) Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11, 146–151.PubMedCrossrefGoogle Scholar

  • Zuo, J., Niu, Q.W., and Chua, N.H. (2000). Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273.PubMedCrossrefGoogle Scholar

About the article

Frederik Faden

Frederik Faden was born in Siegburg, Germany. After a one year stay in Ottawa, Canada he studied biology at the University of Bonn, Germany, from 2005 to 2011, where he finished his diploma on the enzyme ALDEHYDE DEHYDROGENASE 3H1 from Arabidopsis thaliana in the group of Prof. Dr. Dorothea Bartels. Since 2011, he has been a PhD student in the Dissmeyer laboratory at the Leibniz Institute of Plant Biochemistry (IPB) at Halle, Germany, and works on the elucidation of the N-end rule pathway of targeted proteolysis in plants.

Stefan Mielke

Stefan Mielke studies biochemistry at the Martin Luther University of Halle-Wittenberg (MLU), Germany. He received his Bachelors degree in 2012 for investigating the COI1-JAZ co-receptor of jasmonate perception in the group of Prof. Dr. Bettina Hause at the Leibniz Institute of Plant Biochemistry (IPB). Currently, he is working on his Masters thesis at the IPB in Nico Dissmeyer’s lab and is interested in conditional expression of proteins in plants.

Dieter Lange

Dieter Lange studies biochemistry at the MLU and finished his Bachelors degree in Dr. Ute Lechner’s group. He worked on the genetic characterization of microbial communities on artificial beads for waste water purification. He is currently doing his master thesis at the IBP in Nico Dissmeyer’s lab on the optimization of conditional protein depletion in Arabidopsis thaliana.

Nico Dissmeyer

Nico Dissmeyer was born in Detmold, Germany, moved to Tübingen to study biochemistry and philosophy. He moved on via Oregon State University, Corvallis, USA and the Freie Universität Berlin to study biochemistry and biophysics to get his PhD from the Universität zu Köln in 2009 for work on CYCLIN-DEPENDENT-KINASE A;1 at the Max Planck Institute for Plant Breeding Research at Cologne. After a postdoc at the Institut de Biologie Moléculaire des Plantes of the CNRS at Strasbourg, France, he came to the IPB in spring 2011. He is heading the junior research group of the ScienceCampus Halle since October 2011 and interested in highly selective ways for protein recognition and degradation, with special emphasis on the N-end rule pathway.

Corresponding author: Nico Dissmeyer, Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle/Saale, Germany; and ScienceCampus Halle – Plant-based Bioeconomy, D-06120 Halle/Saale, Germany, e-mail:

Received: 2014-03-04

Accepted: 2014-05-15

Published Online: 2014-07-08

Published in Print: 2014-07-01

Citation Information: Biological Chemistry, Volume 395, Issue 7-8, Pages 737–762, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0160.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Toyoaki Natsume and Masato T. Kanemaki
Annual Review of Genetics, 2017, Volume 51, Number 1, Page 83
Sophia L. Samodelov and Matias D. Zurbriggen
Trends in Plant Science, 2017, Volume 22, Number 8, Page 685
Justine Braguy and Matias D. Zurbriggen
The Plant Journal, 2016, Volume 87, Number 1, Page 118
Frederik Faden, Thomas Ramezani, Stefan Mielke, Isabel Almudi, Knud Nairz, Marceli S. Froehlich, Jörg Höckendorff, Wolfgang Brandt, Wolfgang Hoehenwarter, R. Jürgen Dohmen, Arp Schnittger, and Nico Dissmeyer
Nature Communications, 2016, Volume 7, Page 12202
Ryan M. Sheridan and David L. Bentley
BioTechniques, 2016, Volume 60, Number 2
Namho Kim, Gregg A. Duncan, Justin Hanes, and Jung Soo Suk
Journal of Controlled Release, 2016, Volume 240, Page 465
Meredith C Schuman, Nicole M van Dam, Franziska Beran, and W Stanley Harpole
Current Opinion in Insect Science, 2016, Volume 14, Page 46
Annika K. Weimer, Dmitri Demidov, Inna Lermontova, Tom Beeckman, and Daniël Van Damme
Trends in Plant Science, 2016, Volume 21, Number 1, Page 69
Geng Yu, Julian N Rosenberg, Michael J Betenbaugh, and George A Oyler
Current Opinion in Biotechnology, 2015, Volume 36, Page 199

Comments (0)

Please log in or register to comment.
Log in