Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 11

Issues

Biogenesis of mitochondrial outer membrane proteins, problems and diseases

Lars Ellenrieder
  • Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
  • Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph U. Mårtensson
  • Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
  • Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Becker
  • Corresponding author
  • Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
  • BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-14 | DOI: https://doi.org/10.1515/hsz-2015-0170

Abstract

Proteins of the mitochondrial outer membrane are synthesized as precursors on cytosolic ribosomes and sorted via internal targeting sequences to mitochondria. Two different types of integral outer membrane proteins exist: proteins with a transmembrane β-barrel and proteins embedded by a single or multiple α-helices. The import pathways of these two types of membrane proteins differ fundamentally. Precursors of β-barrel proteins are first imported across the outer membrane via the translocase of the outer membrane (TOM complex). The TOM complex is coupled to the sorting and assembly machinery (SAM complex), which catalyzes folding and membrane insertion of these precursors. The mitochondrial import machinery (MIM complex) promotes import of proteins with multiple α-helical membrane spans. Depending on the topology precursors of proteins with a single α-helical membrane anchor are imported via several distinct routes. We summarize current models and open questions of biogenesis of mitochondrial outer membrane proteins and discuss the impact of malfunctions of protein sorting on the development of diseases.

Keywords: MIM complex; mitochondria; outer membrane; protein import; SAM complex; TOM complex

References

  • Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.Google Scholar

  • Ahting, U., Waizenegger, T., Neupert, W., and Rapaport, D. (2005). Signal-anchored proteins follow a unique insertion pathway into the outer membrane of mitochondria. J. Biol. Chem. 280, 48–53.Google Scholar

  • Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A., and Pfanner, N. (1995). The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell. Biol. 15, 6196–6205.CrossrefGoogle Scholar

  • Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C., and Wiedemann, N. (2008). Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J. Biol. Chem. 283, 120–127.Google Scholar

  • Becker, T., Guiard, B., Thornton, N., Zufall, N., Stroud, D.A., Wiedemann, N., and Pfanner, N. (2010). Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell 21, 3106–3113.CrossrefGoogle Scholar

  • Becker, T., Wenz, L.-S., Thornton, N., Stroud, D., Meisinger, C., Wiedemann, N., and Pfanner, N. (2011a). Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 405, 113–124.Google Scholar

  • Becker, T., Wenz, L.-S., Krüger, V., Lehmann, W., Müller, J.M., Goroncy, L., Zufall, N., Lithgow, T., Guiard, B., Chacinska, A., et al. (2011b). The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J. Cell Biol. 194, 387–395.Google Scholar

  • Becker, T., Böttinger, L., and Pfanner, N. (2012). Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem. Sci. 37, 85–91.Google Scholar

  • Beilharz, T., Egan, B., Silver, P.A., Hofmann, K., and Lithgow, T. (2003). Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8219–8223.Google Scholar

  • Bellot, G., Cartron, P.-F., Er, E., Oliver, L., Juin, P., Armstrong, L.C., Bornstein, P., Mihara, K., Manon, S., and Vallette, F.M. (2007). TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ. 14, 785–794.CrossrefGoogle Scholar

  • Bohnert, M., Wenz, L.-S., Zerbes, R.M., Horvath, S.E., Stroud, D.A., von der Malsburg, K., Müller, J.M., Oeljeklaus, S., Perschil, I., Warscheid B., et al. (2012). Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol. Biol. Cell 23, 3948–3956.CrossrefGoogle Scholar

  • Boldogh, I.R., Nowakowski, D.W., Yang, H.-C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.Google Scholar

  • Borgese, N. and Fasana, E. (2011). Targeting pathways of C-tail-anchored proteins. Biochim. Biophys. Acta 1808, 937–946.Google Scholar

  • Brandner, K., Mick, D.U., Frazier, A.E., Taylor, R.D., Meisinger, C., and Rehling, P. (2005). Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome. Mol. Biol. Cell 16, 5202–5214.CrossrefGoogle Scholar

  • Bredemeier, R., Schlegel, T., Ertel, F., Vojta, A., Borissenko, L., Bohnsack, M.T., Groll, M., von Haeseler, A., and Schleiff, E. (2007). Functional and phylogenetic properties of the pore-forming β-barrel transporters of the Omp85 family. J. Biol. Chem. 282, 1882–1890.Google Scholar

  • Brix, J., Dietmeier, K., and Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735.Google Scholar

  • Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuán Szklarz, L.K.S., Schulze-Specking, A., Truscott, K.N., Guiard, B., Meisinger, C., and Pfanner, N. (2004). Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 23, 3735–3746.CrossrefGoogle Scholar

  • Chacinska, A., Lind, M., Frazier, A., Meyer, H.E., Truscott, K.N., Guiard, B., Pfanner, N., and Rehling, P. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.CrossrefGoogle Scholar

  • Chan, N.C. and Lithgow, T. (2008). The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol. Biol. Cell 19, 126–136.CrossrefGoogle Scholar

  • Chen, Y.-C., Umanah, G.K.E., Dephoure, N., Andrabi, S.A., Gygi, S.P., Dawson, T.M., Dawson, V.L., and Rutter, J. (2014). Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 33, 1548–1564.Google Scholar

  • Cozzolino, M., Ferri, A., Valle, C., and Carrì, M.T. (2013). Mitochondria and ALS: implications from novel genes and pathways. Mol. Cell. Neurosci. 55, 44–49.CrossrefGoogle Scholar

  • Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G., and Anandatheerthavarada, H.K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068.Google Scholar

  • Dietmeier, K., Hönlinger, A., Bömer, U., Dekker, P.J.T., Eckerskorn, C., Lottspeich, F., Kübrich, M., and Pfanner, N. (1997). Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200.Google Scholar

  • Dimmer, K.S. and Rapaport, D. (2010). The enigmatic role of Mim1 in mitochondrial biogenesis. Eur. J. Cell Biol. 89, 212–215.Google Scholar

  • Dimmer, K.S., Papic, D., Schumann, B., Sperl, D., Krumpe, K., Walther, D.M., and Rapaport, D. (2012). A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J. Cell. Sci. 125, 3464–3473.Google Scholar

  • Dukanovic, J., Dimmer, K.S., Bonnefoy, N., Krumpe, K., and Rapaport, D. (2009). Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol. Cell. Biol. 29, 5975–5988.CrossrefGoogle Scholar

  • Dundas, S.R., Lawrie, L.C., Rooney, P.H., and Murray, G.I. (2005). Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J. Pathol. 205, 74–81.Google Scholar

  • Endo, T. and Yamano, K. (2009). Multiple pathways for mitochondrial protein traffic. Biol. Chem. 390, 723–730.Google Scholar

  • Esaki, M., Shimizu, H., Ono, T., Yamamoto, H., Kanamori, T., Nishikawa, S.-I., and Endo, T. (2004). Mitochondrial protein import: requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279, 45701–45707.Google Scholar

  • Friedman, J.R. and Nunnari, J. (2014). Mitochondrial form and function. Nature 505, 335–343.Google Scholar

  • Gentle, I., Gabriel, K., Beech, P., Waller, R., and Lithgow, T. (2004). The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24.Google Scholar

  • Habib, S.J., Waizenegger, T., Lech, M., Neupert, W., and Rapaport, D. (2005). Assembly of the TOB complex of mitochondria. J. Biol. Chem. 280, 6434–6440.Google Scholar

  • Habib, S.J., Waizenegger, T., Niewienda, A., Paschen, S.A., Neupert, W., and Rapaport, D. (2007). The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 176, 77–88.Google Scholar

  • Harner, M., Neupert, W., and Deponte, M. (2011a). Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J. 30, 3232–3241.CrossrefGoogle Scholar

  • Harner, M., Körner, C., Walther, D., Mokranjac, D., Kaesmacher, J., Welsch, U., Griffith, J., Mann, M., Reggiori, F., and Neupert, W. (2011b). The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30, 4356–4370.CrossrefGoogle Scholar

  • Hasson, S.A., Kane, L.A., Yamano, K., Huang, C.-H., Sliter, D.A., Buehler, E., Wang, C., Heman-Ackah, S.M., Hessa, T., Guha, R., et al. (2013). High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295.Google Scholar

  • Hegde, R.S. and Keenan, R.J. (2011). Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12, 787–798.CrossrefGoogle Scholar

  • Hell, K., Neupert, W., and Stuart, R.A. (2001). Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J. 20, 1281–1288.CrossrefGoogle Scholar

  • Herndon, J.D., Claypool, S.M., and Koehler, C.M. (2013). The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain. Eukaryotic Cell 12, 1600–1608.CrossrefGoogle Scholar

  • Hewitt, V., Alcock, F., and Lithgow, T. (2011). Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. Biochim. Biophys. Acta 1808, 947–954.Google Scholar

  • Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.Google Scholar

  • Hoppins, S.C. and Nargang, F.E. (2004). The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405.Google Scholar

  • Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., DeVay, R.M., Lackner, L.L., Westermann, B., Schuldiner, M., Weissman, J.S., and Nunnari, J. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell. Biol. 195, 323–340.Google Scholar

  • Horie, C., Suzuki, H., Sakaguchi, M., and Mihara, K. (2002). Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol. Biol. Cell 13, 1615–1625.CrossrefGoogle Scholar

  • Hönlinger, A., Bömer, U., Alconada, A., Eckerskorn, C., Lottspeich, F., Dietmeier, K., and Pfanner, N. (1996). Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15, 2125-2137.Google Scholar

  • Hulett, J.M., Lueder, F., Chan, N.C., Perry, A.J., Wolynec, P., Likić, V.A., Gooley, P.R., and Lithgow, T. (2008). The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J. Mol. Biol. 376, 694–704.Google Scholar

  • Humphries, A.D., Streimann, I.C., Stojanovski, D., Johnston, A.J., Yano, M., Hoogenraad, N.J., and Ryan, M.T. (2005). Dissection of the mitochondrial import and assembly pathway for human Tom40. J. Biol. Chem. 280, 11535–11543.Google Scholar

  • Ishikawa, D., Yamamoto, H., Tamura, Y., Moritoh, K., and Endo, T. (2004). Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly. J. Cell Biol. 166, 621–627.Google Scholar

  • Jiang, J.-H., Davies, J.K., Lithgow, T., Strugnell, R.A., and Gabriel, K. (2011). Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines. Mol. Microbiol. 82, 976–987.CrossrefGoogle Scholar

  • Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M., and Mihara, K. (2000). Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol. 151, 277–288.Google Scholar

  • Kawano, S., Yamano, K., Naoé, M., Momose, T., Terao, K., Nishikawa, S.-I., Watanabe, N., and Endo, T. (2009). Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. USA 106, 14403–14407.CrossrefGoogle Scholar

  • Keil, P. and Pfanner, N. (1993). Insertion of MOM22 into the mitochondrial outer membrane strictly depends on surface receptors. FEBS Lett. 321, 197–200.Google Scholar

  • Kemper, C., Habib, S.J., Engl, G., Heckmeyer, P., Dimmer, K.S., and Rapaport, D. (2008). Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J. Cell. Sci. 121, 1990–1998.Google Scholar

  • Klecker, T., Böckler, S., and Westermann, B. (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24, 537–545.CrossrefGoogle Scholar

  • Klein, A., Israel, L., Lackey, S.W.K., Nargang, F.E., Imhof, A., Baumeister, W., Neupert, W., and Thomas, D.R. (2012). Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. J. Cell Biol. 199, 599–611.Google Scholar

  • Koehler, C.M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R.J., and Schatz G. (1998). Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 369–373.Google Scholar

  • Körner, C., Barrera, M., Dukanovic, J., Eydt, K., Harner, M., Rabl, R., Vogel, F., Rapaport, D., Neupert, W., and Reichert, A.S. (2012). The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol. Biol. Cell 23, 2143–2155.Google Scholar

  • Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.Google Scholar

  • Kozjak, V., Wiedemann, N., Milenkovic, D., Lohaus, C., Meyer, H.E., Guiard, B., Meisinger, C., and Pfanner, N. (2003). An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523.Google Scholar

  • Kozjak-Pavlovic, V., Ross, K., Benlasfer, N., Kimmig, S., Karlas, A., and Rudel, T. (2007). Conserved roles of Sam50 and metaxins in VDAC biogenesis. EMBO Rep. 8, 576–582.CrossrefGoogle Scholar

  • Kozjak-Pavlovic, V., Dian-Lothrop, E.A., Meinecke, M., Kepp, O., Ross, K., Rajalingam, K., Harsman, A., Hauf, E., Brinkmann, V., Günther, D. et al. (2009). Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis. PLoS Pathog. 5, e1000629.CrossrefGoogle Scholar

  • Krimmer, T., Rapaport, D., Ryan, M.T., Meisinger, C., Kassenbrock, C.K., Blachly-Dyson, E., Forte, M., Douglas, M.G., Neupert, W., Nargang, F.E., et al. (2001). Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex. J. Cell Biol. 152, 289–300.Google Scholar

  • Krumpe, K., Frumkin, I., Herzig, Y., Rimon, N., Ozbalci, C., Brügger, B., Rapaport, D., and Schuldiner, M. (2012). Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol. Biol. Cell 23, 3927–3935.CrossrefGoogle Scholar

  • Kutik, S., Stojanovski, D., Becker, L., Becker, T., Meinecke, M., Krüger, V., Prinz, C., Meisinger, C., Guiard, B., Wagner, R., et al. (2008). Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132, 1011–1024.Google Scholar

  • Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.Google Scholar

  • Lackey, S.W., Wideman, J.G., Kennedy, E.K., Go, N.E., and Nargang, F.E. (2011). The Neurospora crassa TOB complex: analysis of the topology and function of Tob38 and Tob37. PLoS One 6, e25650.Google Scholar

  • Lauffer, S., Mäbert, K., Czupalla, C., Pursche, T., Hoflack, B., Rödel, G., and Krause-Buchholz, U. (2012). Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. J. Biol. Chem. 287, 17447–17458.Google Scholar

  • Lazarou, M., Jin, S.M., Kane, L.A., and Youle, R.J. (2012). Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333.Google Scholar

  • Li, Q., Vande Velde, C., Israelson, A., Xie, J., Bailey, A.O., Dong, M.-Q., Chun, S.-J., Roy, T., Winer, L., Yates, J.R, et al. (2010). ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc. Natl. Acad. Sci. USA 107, 21146–21151.CrossrefGoogle Scholar

  • Liu, Q., D’Silva, P., Walter, W., Marszalek, J., and Craig, E.A. (2003). Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300, 139–141.Google Scholar

  • Lu, W.-J., Lee, N.P., Kaul, S.C., Lan, F., Poon, R.T.P., Wadhwa, R., and Luk, J.M. (2011). Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ. 18, 1046–1056.CrossrefGoogle Scholar

  • Malhotra, K., Sathappa, M., Landin, J.S., Johnson, A.E., and Alder, N.N. (2013). Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force. Nat. Struct. Mol. Biol. 20, 965–972.CrossrefGoogle Scholar

  • Martinou, J.-C. and Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92–101.CrossrefGoogle Scholar

  • Massari, P., King, C.A., Ho, A.Y., and Wetzler, L.M. (2003). Neisserial PorB is translocated to the mitochondria of HeLa cells infected with Neisseria meningitis and protects cells from apoptosis. Cell Microbiol. 5, 99–109.CrossrefGoogle Scholar

  • Meineke, B., Engl, G., Kemper, C., Vasiljev-Neumeyer, A., Paulitschke, H., and Rapaport, D. (2008). The outer membrane form of the mitochondrial protein Mcr1 follows a TOM-independent membrane insertion pathway. FEBS Letters 582, 855–860.Google Scholar

  • Meisinger, C., Rissler, M., Chacinska, A., Sanjuán Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.CrossrefGoogle Scholar

  • Meisinger, C., Wiedemann, N., Rissler, M., Strub, A., Milenkovic, D., Schönfisch, B., Müller, H., Kozjak, V., and Pfanner, N. (2006). Mitochondrial protein sorting: differentiation of β-barrel assembly by Tom7-mediated segregation of Mdm10. J. Biol. Chem. 281, 22819–22826.Google Scholar

  • Meisinger, C., Pfannschmidt, S., Rissler, M., Milenkovic, D., Becker, T., Stojanovski, D., Youngman, M.J., Jensen, R.E., Chacinska, A., Guiard, B., et al. (2007). The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J. 26, 2229–2239.Google Scholar

  • Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert W., Hell, K., and Herrmann, J.M. (2005). A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059–1069.CrossrefGoogle Scholar

  • Milenkovic, D., Kozjak, V., Wiedemann, N., Lohaus, C., Meyer, H.E., Guiard, B., Pfanner, N., and Meisinger, C. (2004). Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J. Biol. Chem. 279, 22781–22785.Google Scholar

  • Model, K., Prinz, T., Ruiz, T., Radermacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666.Google Scholar

  • Mossmann, D., Vögtle, F.-N., Taskin, A.A., Teixeira, P.F., Ring, J., Burkhart, J.M., Burger, N., Pinho, C.M., Tadic, J., Loreth, D., et al. (2014). Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 20, 1–8.CrossrefGoogle Scholar

  • Neupert, W. and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749.Google Scholar

  • Noinaj, N., Kuszak, A.J., Gumbart, J.C., Lukacik, P., Chang, H., Easley, N.C., Lithgow, T., and Buchanan, S.K. (2013). Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390.Google Scholar

  • Nunnari, J. and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145–1159.Google Scholar

  • Okatsu, K., Kimura, M., Oka, T., Tanaka, K., and Matsuda, N. (2015). Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell. Sci. 128, 964–978.Google Scholar

  • Okreglak, V. and Walter, P. (2014). The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl. Acad. Sci. USA 111, 8019–8024.Google Scholar

  • Otera, H., Taira, Y., Horie, C., Suzuki, Y., Suzuki, H., Setoguchi, K., Kato, H., Oka, T., and Mihara, K. (2007). A novel insertion pathway of mitochondrial outer membrane proteins with multiple transmembrane segments. J. Cell Biol. 179, 1355–1363.Google Scholar

  • Ott, C., Ross, K., Straub, S., Thiede, B., Götz, M., Goosmann, C., Krischke, M., Mueller, M.J., Krohne, G., Rudel, T., et al. (2012). Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol. Cell. Biol. 32, 1173–1188.CrossrefGoogle Scholar

  • Ott, M., Norberg, E., Walter, K.M., Schreiner, P., Kemper, C., Rapaport, D., Zhivotovsky, B., and Orrenius, S. (2007). The mitochondrial TOM complex is required for tBid/Bax-induced cytochrome c release. J. Biol. Chem. 282, 27633–27639.Google Scholar

  • Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., and Chen, W.K. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123.Google Scholar

  • Papic, D., Krumpe, K., Dukanovic, J., Dimmer, K.S., and Rapaport, D. (2011). Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway. J. Cell Biol. 194, 397–405.Google Scholar

  • Papic, D., Elbaz-Alon, Y., Koerdt, S.N., Leopold, K., Worm, D., Jung, M., Schuldiner, M., and Rapaport, D. (2013). The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell. Biol. 33, 4083–4094.CrossrefGoogle Scholar

  • Paschen, S.A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., Rapaport, D., and Neupert, W. (2003). Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866.Google Scholar

  • Pfanner, N., van der Laan, M., Amati, P., Capaldi, R.A., Caudy, A.A., Chacinska, A., Darshi, M., Deckers, M., Hoppins, S., Icho, T., et al. (2014). Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell. Biol. 204, 1083–1086.Google Scholar

  • Pickrell, A.M. and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273.Google Scholar

  • Popov-Celeketić, J., Waizenegger, T., and Rapaport, D. (2008). Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J. Mol. Biol. 376, 671–680.Google Scholar

  • Qiu, J., Wenz, L.-S., Zerbes, R.M., Oeljeklaus, S., Bohnert, M., Stroud, D.A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., et al. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154, 596–608.Google Scholar

  • Reinders, J., Zahedi, R.P., Pfanner, N., Meisinger, C., and Sickmann, A. (2006). Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5, 1543–1554.CrossrefGoogle Scholar

  • Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003). Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751.Google Scholar

  • Rugarli, E.I. and Langer, T. (2012). Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 31, 1336–1349.CrossrefGoogle Scholar

  • Sanjuán Szklarz, L.K., Kozjak-Pavlovic, V., Vögtle, F.-N., Chacinska, A., Milenkovic, D., Vogel, S., Dürr, M., Westermann, B., Guiard, B., Martinou, J.C., et al. (2007). Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins. J. Mol Biol. 368, 44–54.Google Scholar

  • Sankala, H., Vaughan, C., Wang, J., Deb, S., and Graves, P.R. (2011). Upregulation of the mitochondrial transport protein, Tim50, by mutant p53 contributes to cell growth and chemoresistance. Arch. Biochem. Biophys. 512, 52–60.Google Scholar

  • Schmitt, S., Ahting, U., Eichacker, L., Granvogl, B., Go, N.E., Nargang, F.E., Neupert, W., and Nussberger, S. (2005). Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506.Google Scholar

  • Schneider, H., Söllner, T., Dietmeier, K., Eckerskorn, C., Lottspeich, F., Trülzsch, B., Neupert, W., and Pfanner, N. (1991). Targeting of the master receptor MOM19 to mitochondria. Science 254, 1659–1662.Google Scholar

  • Schuldiner, M., Metz, J., Schmid, V., Denic, V., Rakwalska, M., Schmitt, H.D., Schwappach, B., and Weissman, J.S. (2008). The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645.Google Scholar

  • Setoguchi, K., Otera, H., and Mihara, K. (2006). Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J. 25, 5635–5647.CrossrefGoogle Scholar

  • Sherman, E.L., Go, N.E., and Nargang, F.E. (2005). Functions of the small proteins in the TOM complex of Neurospora crasssa. Mol. Biol. Cell 16, 4172–4182.CrossrefGoogle Scholar

  • Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., and Endo, T. (2011). In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc. Natl. Acad. Sci. USA 108, 15179–15183.CrossrefGoogle Scholar

  • Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H.E., Schönfisch, B., Perschil, I., Chacinska, A., Guiard, B., et al. (2003). The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100, 13207–13212.CrossrefGoogle Scholar

  • Sirrenberg, C., Endres, M., Fölsch, H., Stuart, R.A., Neupert, W., and Brunner, M. (1998). Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 381, 912–915.Google Scholar

  • Sokol, A.M., Sztolsztener, M.E., Wasilewski, M., Heinz, E., and Chacinska, A. (2014). Mitochondrial protein translocases for survival and wellbeing. FEBS Lett. 588, 2484–2495.Google Scholar

  • Song, J., Tamura, Y., Yoshihisa, T., and Endo, T. (2014). A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep. 15, 670–677.Google Scholar

  • Stojanovski, D., Guiard, B., Kozjak-Pavlovic, V., Pfanner, N., and Meisinger, C. (2007). Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins. J. Cell Biol. 179, 881–893.Google Scholar

  • Stroud, D.A., Becker, T., Qiu, J., Stojanovski, D., Pfannschmidt, S., Wirth, C., Hunte, C., Guiard, B., Meisinger, C., Pfanner, N., et al. (2011). Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol. Biol. Cell 22, 2823–2833.CrossrefGoogle Scholar

  • Suzuki, H., Kadowaki, T., Maeda, M., Sasaki, H., Nabekura, J., Sakaguchi, M., and Mihara, K. (2004). Membrane-embedded C-terminal segment of rat mitochondrial TOM40 constitutes protein-conducting pore with enriched β-structure. J. Biol. Chem. 279, 50619–50629.Google Scholar

  • Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W., and Herrmann, J.M. (2003). Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22, 6448–6457.Google Scholar

  • Thornton, N., Stroud, D.A., Milenkovic, D., Guiard, B., Pfanner, N., and Becker, T. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of α-helical outer membrane proteins. J. Mol. Biol. 396, 540–549.Google Scholar

  • Ulrich, T., Gross, L.E., Sommer, M.S., Schleiff, E., and Rapaport, D. (2012). Chloroplast β-barrel proteins are assembled into the mitochondrial outer membrane in a process that depends on the TOM and TOB complexes. J. Biol. Chem. 287, 27467–27479.Google Scholar

  • Ulrich, T., Oberhettinger, P., Schütz, M., Holzer, K., Ramms, A.S., Linke, D., Autenrieth, I.B., and Rapaport, D. (2014). Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J. Biol. Chem. 289, 29457–29470.Google Scholar

  • van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J.T., Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489.Google Scholar

  • von der Malsburg, K., Müller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21, 694–707.CrossrefGoogle Scholar

  • Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M., and Tommassen, J. (2003). Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265.Google Scholar

  • Wadhwa, R., Takano, S., Kaur, K., Deocaris, C.C., Pereira-Smith, O.M., Reddel, R.R., and Kaul, S.C. (2006). Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int. J. Cancer 118, 2973–2980.Google Scholar

  • Waizenegger, T., Habib, S.J., Lech, M., Mokranjac, D., Paschen, S.A., Hell, K., Neupert, W., and Rapaport, D. (2004). Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. EMBO Rep. 5, 704–709.CrossrefGoogle Scholar

  • Waizenegger, T., Schmitt, S., Zivkovic, J., Neupert, W., and Rapaport, D. (2005). Mim1, a protein required for the assembly of the TOM complex of mitochondria. EMBO Rep. 6, 57–62.CrossrefGoogle Scholar

  • Walther, D.M., Papic, D., Bos, M.P., Tommassen, J., and Rapaport, D. (2009). Signals in bacterial β-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc. Natl. Acad. Sci. USA 106, 2531–2536.Google Scholar

  • Wang, F., Brown, E.C., Mak, G., Zhuang, J., and Denic, V. (2010). A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171.CrossrefGoogle Scholar

  • Wenz, L.-S., Opaliński, L., Schuler, M.-H., Ellenrieder, L., Ieva, R., Böttinger, L., Qiu, J., van der Laan, M., Wiedemann, N., Guiard, B., et al. (2014). The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Rep. 15, 678–685.Google Scholar

  • Wideman, J.G., Go, N.E., Klein, A., Redmond, E., Lackey, S.W.K., Tao, T., Kalbacher, H., Rapaport, D., Neupert, W., and Nargang, F.E. (2010). Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol. Biol. Cell 21, 1725–1736.CrossrefGoogle Scholar

  • Wideman, J.G., Lackey, S.W., Srayko, M.A., Norton, K.A., and Nargang, F.E. (2013). Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 8, e71837.Google Scholar

  • Wiedemann, N., Kozjak, V., Chacinska, A., Schönfisch, B., Rospert, S., Ryan, M.T., Pfanner, N., and Meisinger, C. (2003). Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571.Google Scholar

  • Wiedemann, N., Truscott, K.N., Pfannschmidt, S., Guiard, B., Meisinger, C., and Pfanner, N. (2004). Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194.Google Scholar

  • Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T.J., and Kahne, D. (2005). Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245.CrossrefGoogle Scholar

  • Xie, J., Marusich, M.F., Souda, P., Whitelegge, J., and Capaldi, R.A. (2007). The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett. 581, 3545–3549.Google Scholar

  • Xu, X., Qiao, M., Zhang, Y., Jiang, Y., Wei, P., Yao, J., Gu, B., Wang, Y., Lu, J., Wang, Z., et al. (2010). Quantitative proteomics study of breast cancer cell lines isolated from a single patient: discovery of TIMM17A as a marker for breast cancer. Proteomics 10, 1374–1390.CrossrefGoogle Scholar

  • Yamano, K., Yatsukawa, Y.-I., Esaki, M., Hobbs, A.E.A., Jensen, R.E., and Endo, T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283, 3799–3807.Google Scholar

  • Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010a). Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem. 285, 41222–41231.Google Scholar

  • Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010b). Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep. 11, 187–193.Google Scholar

  • Yang, J., Staples, O., Thomas, L.W., Briston, T., Robson, M., Poon, E., Simões, M.L., El-Emir, E., Buffa, F.M., Ahmed, A., et al. (2012). Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J. Clin. Invest. 122, 600–611.Google Scholar

  • Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S.-I., Mihara, K., and Koshiba, T. (2014). Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun. 5, 4713.CrossrefGoogle Scholar

  • Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.CrossrefGoogle Scholar

  • Zerbes, R.M., Bohnert, M., Stroud, D.A., von der Malsburg, K., Kram, A., Oeljeklaus, S., Warscheid, B., Becker, T., Wiedemann, N., Veenhuis, M., et al. (2012). Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J. Mol. Biol. 422, 183–191.Google Scholar

About the article

Lars Ellenrieder

Lars Ellenrieder studied Molecular Medicine at the University of Freiburg. Currently, he is a PhD student in the group of Thomas Becker, studying protein biogenesis and protein complex formation of the mitochondrial outer membrane.

Christoph U. Mårtensson

Christoph U. Mårtensson studied Molecular Life Science at the University of Lübeck and was Erasmus student at Imperial College London. Currently, he is a PhD student in the group of Thomas Becker and is working on the characterization of novel interaction partners of the TOM and MIM complexes.

Thomas Becker

Thomas Becker, PhD, received his training at the Universities of Kiel, Munich and Freiburg. Since 2009 he has been group leader (Assistant Professor) at the University of Freiburg. Research areas: mitochondrial protein sorting, protein networks and cytosolic protein targeting.


Corresponding author: Thomas Becker, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany, e-mail:


Received: 2015-04-30

Accepted: 2015-05-08

Published Online: 2015-05-14

Published in Print: 2015-11-01


Citation Information: Biological Chemistry, Volume 396, Issue 11, Pages 1199–1213, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0170.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sansrity Sinha and Gopala Krishna Aradhyam
Biochemical and Biophysical Research Communications, 2019, Volume 509, Number 3, Page 707
[2]
Thea Heinemeyer, Monique Stemmet, Soraya Bardien, and Annika Neethling
DNA and Cell Biology, 2018
[3]
Chantal Priesnitz and Thomas Becker
Genes & Development, 2018, Volume 32, Number 19-20, Page 1285
[4]
Siyu Wu, Lili Lei, Yang Song, Mengting Liu, Shibo Lu, Dan Lou, Yonghong Shi, Zhibin Wang, and Defu He
Experimental Neurology, 2018, Volume 309, Page 67
[5]
Vivien Krüger, Thomas Becker, Lars Becker, Malayko Montilla-Martinez, Lars Ellenrieder, F.-Nora Vögtle, Helmut E. Meyer, Michael T. Ryan, Nils Wiedemann, Bettina Warscheid, Nikolaus Pfanner, Richard Wagner, and Chris Meisinger
The Journal of Cell Biology, 2017, Page jcb.201706043
[6]
Nils Wiedemann and Nikolaus Pfanner
Annual Review of Biochemistry, 2017, Volume 86, Number 1, Page 685
[7]
Lars Ellenrieder, Heike Rampelt, and Thomas Becker
Journal of Molecular Biology, 2017, Volume 429, Number 14, Page 2148
[8]
Paul A. Lindahl and Michael J. Moore
Biochemistry, 2016, Volume 55, Number 30, Page 4140
[9]
María Luisa Campo, Pablo M. Peixoto, and Sonia Martínez-Caballero
Journal of Bioenergetics and Biomembranes, 2017, Volume 49, Number 1, Page 75

Comments (0)

Please log in or register to comment.
Log in