Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 11 (Nov 2015)

Issues

Hepatitis C virus and autophagy

Linya Wang
  • Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing-hsiung James Ou
  • Corresponding author
  • Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-29 | DOI: https://doi.org/10.1515/hsz-2015-0172

Abstract

Autophagy is a catabolic process by which cells remove protein aggregates and damaged organelles for recycling. It can also be used by cells to remove intracellular microbial pathogens, including viruses, in a process known as xenophagy. However, many viruses have developed mechanisms to subvert this intracellular antiviral response and even use this pathway to support their own replications. Hepatitis C virus (HCV) is one such virus and is an important human pathogen that can cause severe liver diseases. Recent studies indicated that HCV could activate the autophagic pathway to support its replication. This review summarizes the current knowledge on the interplay between HCV and autophagy and how this interplay affects HCV replication and host innate immune responses.

Keywords: autolysosomes; autophagosomes; autophagy; hepatitis C virus; innate immunity; unfolded protein response

References

  • Ait-Goughoulte, M., Kanda, T., Meyer, K., Ryerse, J.S., Ray, R.B., and Ray, R. (2008). Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 82, 2241–2249.CrossrefGoogle Scholar

  • Aweya, J.J., Mak, T.M., Lim, S.G., and Tan, Y.J. (2013). The p7 protein of the hepatitis C virus induces cell death differently from the influenza A virus viroporin M2. Virus Res. 172, 24–34.Google Scholar

  • Bartenschlager, R. and Lohmann, V. (2000). Replication of hepatitis C virus. J. Gen. Virol. 81, 1631–1648.Google Scholar

  • Chatterji, U., Bobardt, M., Tai, A., Wood, M., and Gallay, P.A. (2015). Cyclophilin and NS5A inhibitors, but not other anti-hepatitis C virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories. Antimicrob. Agents Chemother. 59, 2496–2507.Google Scholar

  • Desai, M.M., Gong, B., Chan, T., Davey, R.A., Soong, L., Kolokoltsov, A.A., and Sun, J. (2011). Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver. Gastroenterology 141, 674–685, 685 e671–e676.Google Scholar

  • Dreux, M., Gastaminza, P., Wieland, S.F., and Chisari, F.V. (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. USA 106, 14046–14051.Google Scholar

  • Ferraris, P., Blanchard, E., and Roingeard, P. (2010). Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J. Gen. Virol. 91, 2230–2237.CrossrefGoogle Scholar

  • Foy, E., Li, K., Sumpter, R., Jr., Loo, Y.M., Johnson, C.L., Wang, C., Fish, P.M., Yoneyama, M., Fujita, T., Lemon, S.M., et al. (2005). Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. USA 102, 2986–2991.Google Scholar

  • Gomes, L.C. and Dikic, I. (2014). Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233.Google Scholar

  • Gregoire, I.P., Richetta, C., Meyniel-Schicklin, L., Borel, S., Pradezynski, F., Diaz, O., Deloire, A., Azocar, O., Baguet, J., Le Breton, M., et al. (2011). IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 7, e1002422.CrossrefGoogle Scholar

  • Guevin, C., Manna, D., Belanger, C., Konan, K.V., Mak, P., and Labonte, P. (2010). Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405, 1–7.Google Scholar

  • Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell. Biol. 13, 89–102.Google Scholar

  • Huang, H., Kang, R., Wang, J., Luo, G., Yang, W., and Zhao, Z. (2013). Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 9, 175–195.CrossrefGoogle Scholar

  • Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104, 14050–14055.Google Scholar

  • Joyce, M.A., Walters, K.A., Lamb, S.E., Yeh, M.M., Zhu, L.F., Kneteman, N., Doyle, J.S., Katze, M.G., and Tyrrell, D.L. (2009). HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog. 5, e1000291.CrossrefGoogle Scholar

  • Ke, P.Y. and Chen, S.S. (2011). Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121, 37–56.Google Scholar

  • Kim, S.J., Syed, G.H., and Siddiqui, A. (2013). Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 9, e1003285.CrossrefGoogle Scholar

  • Kim, S.J., Syed, G.H., Khan, M., Chiu, W.W., Sohail, M.A., Gish, R.G., and Siddiqui, A. (2014). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. USA 111, 6413–6418.Google Scholar

  • Levine, B. and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27–42.Google Scholar

  • Li, X.D., Sun, L., Seth, R.B., Pineda, G., and Chen, Z.J. (2005). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 102, 17717–17722.Google Scholar

  • Li, S., Ye, L., Yu, X., Xu, B., Li, K., Zhu, X., Liu, H., Wu, X., and Kong, L. (2009). Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulum overload response-dependent NF-κB activation. Virology 391, 257–264.Google Scholar

  • Li, X.D., Chiu, Y.H., Ismail, A.S., Behrendt, C.L., Wight-Carter, M., Hooper, L.V., and Chen, Z.J. (2011). Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl. Acad. Sci. USA 108, 17390–17395.Google Scholar

  • Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10, 776–87.Google Scholar

  • Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385–396.Google Scholar

  • Mizui, T., Yamashina, S., Tanida, I., Takei, Y., Ueno, T., Sakamoto, N., Ikejima, K., Kitamura, T., Enomoto, N., Sakai, T., et al. (2010). Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J. Gastroenterol. 45, 195–203.CrossrefGoogle Scholar

  • Mohl, B.P., Tedbury, P.R., Griffin, S., and Harris, M. (2012). Hepatitis C virus-induced autophagy is independent of the unfolded protein response. J. Virol. 86, 10724–10732.CrossrefGoogle Scholar

  • Moradpour, D., Penin, F., and Rice, C.M. (2007). Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–463.CrossrefGoogle Scholar

  • Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J., and Bartenschlager, R. (2013). Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J. Virol. 87, 10612–10627.CrossrefGoogle Scholar

  • Quan, M., Liu, S., Li, G., Wang, Q., Zhang, J., Zhang, M., Li, M., Gao, P., Feng, S., and Cheng, J. (2014). A functional role for NS5ATP9 in the induction of HCV NS5A-mediated autophagy. J. Viral Hepat. 21, 405–415.Google Scholar

  • Rautou, P.E., Cazals-Hatem, D., Feldmann, G., Mansouri, A., Grodet, A., Barge, S., Martinot-Peignoux, M., Duces, A., Bieche, I., Lebrec, D., et al. (2011). Changes in autophagic response in patients with chronic hepatitis C virus infection. Am. J. Pathol. 178, 2708–2715.Google Scholar

  • Romero-Brey, I., Merz, A., Chiramel, A., Lee, J.Y., Chlanda, P., Haselman, U., Santarella-Mellwig, R., Habermann, A., Hoppe, S., Kallis, S., et al. (2012). Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 8, e1003056.CrossrefGoogle Scholar

  • Shepard, C.W., Finelli, L., and Alter, M.J. (2005). Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558–567.CrossrefGoogle Scholar

  • Shinohara, Y., Imajo, K., Yoneda, M., Tomeno, W., Ogawa, Y., Kirikoshi, H., Funakoshi, K., Ikeda, M., Kato, N., Nakajima, A., et al. (2013). Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy. Biochem. Biophys. Res. Commun. 432, 326–332.Google Scholar

  • Shrivastava, S., Raychoudhuri, A., Steele, R., Ray, R., and Ray, R.B. (2011). Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology 53, 406–414.Google Scholar

  • Shrivastava, S., Bhanja Chowdhury, J., Steele, R., Ray, R., and Ray, R.B. (2012). Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J. Virol. 86, 8705–8712.CrossrefGoogle Scholar

  • Simonsen, A. and Tooze, S.A. (2009). Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782.Google Scholar

  • Sir, D., Chen, W.L., Choi, J., Wakita, T., Yen, T.S., and Ou, J.H. (2008). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48, 1054–1061.Google Scholar

  • Sir, D., Kuo, C.F., Tian, Y., Liu, H.M., Huang, E.J., Jung, J.U., Machida, K., and Ou, J.H. (2012). Replication of hepatitis C virus RNA on autophagosomal membranes. J. Biol. Chem. 287, 18036–18043.Google Scholar

  • Stone, M., Jia, S., Heo, W.D., Meyer, T., and Konan, K.V. (2007). Participation of rab5, an early endosome protein, in hepatitis C virus RNA replication machinery. J. Virol. 81, 4551–4563.Google Scholar

  • Su, W.C., Chao, T.C., Huang, Y.L., Weng, S.C., Jeng, K.S., and Lai, M.M. (2011). Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol. 85, 10561–10571.Google Scholar

  • Sun, Q., Westphal, W., Wong, K.N., Tan, I., and Zhong, Q. (2010). Rubicon controls endosome maturation as a Rab7 effector. Proc. Natl. Acad. Sci. USA 107, 19338–19343.CrossrefGoogle Scholar

  • Taguwa, S., Kambara, H., Fujita, N., Noda, T., Yoshimori, T., Koike, K., Moriishi, K., and Matsuura, Y. (2011). Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J. Virol. 85, 13185–13194.Google Scholar

  • Tanida, I., Fukasawa, M., Ueno, T., Kominami, E., Wakita, T., and Hanada, K. (2009). Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy 5, 937–945.CrossrefGoogle Scholar

  • Tardif, K.D., Mori, K., and Siddiqui, A. (2002). Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453–7459.CrossrefGoogle Scholar

  • Tardif, K.D., Waris, G., and Siddiqui, A. (2005). Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol. 13, 159–163.CrossrefGoogle Scholar

  • Tellinghuisen, T.L., Evans, M.J., von Hahn, T., You, S., and Rice, C.M. (2007). Studying hepatitis C virus: making the best of a bad virus. J. Virol. 81, 8853–8867.Google Scholar

  • Vescovo, T., Romagnoli, A., Perdomo, A.B., Corazzari, M., Ciccosanti, F., Alonzi, T., Nardacci, R., Ippolito, G., Tripodi, M., Garcia-Monzon, C., et al. (2012). Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology 142, 644–653, e643.Google Scholar

  • Wang, M. and Kaufman, R.J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581–597.CrossrefGoogle Scholar

  • Wang, J., Kang, R., Huang, H., Xi, X., Wang, B., Wang, J., and Zhao, Z. (2014). Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway- mediated MAP1LC3B and ATG12 expression. Autophagy 10, 766–784.Google Scholar

  • Wang, L., Tian, Y., and Ou, J.H. (2015). HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 11, e1004764.CrossrefGoogle Scholar

  • Youle, R.J. and Narendra, D.P. (2011). Mechanisms of mitophagy. Nat. Rev. Mol. Cell. Biol. 12, 9–14.CrossrefGoogle Scholar

  • Zheng, Y., Gao, B., Ye, L., Kong, L., Jing, W., Yang, X., Wu, Z., and Ye, L. (2005). Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response. J. Microbiol. 43, 529–536.Google Scholar

About the article

Corresponding author: Jing-hsiung James Ou, Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA, e-mail:


Received: 2015-05-02

Accepted: 2015-05-26

Published Online: 2015-05-29

Published in Print: 2015-11-01


Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0172.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Linya Wang, Ja Yeon Kim, Helene Minyi Liu, Michael M. C. Lai, Jing-hsiung James Ou, and Aleem Siddiqui
PLOS Pathogens, 2017, Volume 13, Number 9, Page e1006609
[3]
Yungang Lan, Gaili Wang, Deguang Song, Wenqi He, Di Zhang, Houshuang Huang, Jingying Bi, Feng Gao, and Kui Zhao
Veterinary Microbiology, 2016, Volume 193, Page 22
[4]
Inés Romero-Brey and Ralf Bartenschlager
Viruses, 2016, Volume 8, Number 6, Page 160
[5]
Hongliang Wang and Andrew Tai
Viruses, 2016, Volume 8, Number 5, Page 142
[6]
Mirjam Zeisel, Emilie Crouchet, Thomas Baumert, and Catherine Schuster
Viruses, 2015, Volume 7, Number 11, Page 5659
[7]
Regina Medvedev, Daniela Ploen, and Eberhard Hildt
Oxidative Medicine and Cellular Longevity, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in