Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 5

Issues

Incidence and physiological relevance of protein thiol switches

Lars I. Leichert
  • Corresponding author
  • Ruhr-Universität Bochum, Institute of Biochemistry and Pathobiochemistry – Microbial Biochemistry, Universitätsstr. 150, D-44780 Bochum, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tobias P. Dick
  • Corresponding author
  • Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-25 | DOI: https://doi.org/10.1515/hsz-2014-0314

Abstract

A few small-molecule oxidants, most notably hydrogen peroxide, can act as messengers in signal transduction. They trigger so-called ‘thiol switches’, cysteine residues that are reversibly oxidized to transiently change the functional properties of their host proteins. The proteome-wide identification of functionally relevant ‘thiol switches’ is of significant interest. Unfortunately, prediction of redox-active cysteine residues on the basis of surface accessibility and other computational parameters appears to be of limited use. Proteomic thiol labeling approaches remain the most reliable strategy to discover new thiol switches in a hypothesis-free manner. We discuss if and how genomic knock-in strategies can help establish the physiological relevance of a ‘thiol switch’ on the organismal level. We conclude that surprisingly few attempts have been made to thoroughly verify the physiological relevance of thiol-based redox switches in mammalian model organisms.

Keywords: cysteine; redox signaling; thiol switches

References

  • Ahmad, S., Gromiha, M.M., and Sarai, A. (2003). Real value prediction of solvent accessibility from amino acid sequence. Proteins 50, 629–635.Google Scholar

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.CrossrefGoogle Scholar

  • Becker, S., Groner, B., and Müller, C.W. (1998). Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145–151.Google Scholar

  • Bossis, G. and Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357.Google Scholar

  • Brandes, N., Rinck, A., Leichert, L.I., and Jakob, U. (2007). Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol. Microbiol. 66, 901–914.Google Scholar

  • Brigelius-Flohé, R. and Flohé, L. (2011). Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal. 15, 2335–2381.Google Scholar

  • Burgoyne, J.R., Madhani, M., Cuello, F., Charles, R.L., Brennan, J.P., Schröder, E., Browning, D.D., and Eaton, P. (2007). Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317, 1393–1397.Google Scholar

  • Butera, D., Cook, K.M., Chiu, J., Wong, J.W.H., and Hogg, P.J. (2014). Control of blood proteins by functional disulfide bonds. Blood 123, 2000–2007.Google Scholar

  • Cavallo, L., Kleinjung, J., and Fraternali, F. (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res. 31, 3364–3366.Google Scholar

  • Chang, J.Y. (1997). A two-stage mechanism for the reductive unfolding of disulfide-containing proteins. J. Biol. Chem. 272, 69–75.Google Scholar

  • Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481.Google Scholar

  • Deponte, M., and Lillig, C.H. (2015). Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396, 401–413.Google Scholar

  • Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J., and Diella, F. (2011). Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res. 39, D261–D267.CrossrefGoogle Scholar

  • Doudna, J.A. and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.Google Scholar

  • Dutton, R.J., Boyd, D., Berkmen, M., and Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105, 11933–11938.Google Scholar

  • Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434–450.Google Scholar

  • Fischer, M., and Riemer, J. (2013). The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int. J.Cell Biol. 2013, 742923.Google Scholar

  • Fomenko, D.E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J.C., Siu, K.-L., Jin, D.-Y., Winge, D.R., et al. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729–2734.Google Scholar

  • Go, Y.-M., and Jones, D.P. (2013). The redox proteome. J. Biol. Chem. 288, 26512–26520.Google Scholar

  • Groitl, B. and Jakob, U. (2014). Thiol-based redox switches. Biochim. Biophys. Acta 1844, 1335–1343.Google Scholar

  • Gulshan, K., Lee, S.S., and Moye-Rowley, W.S. (2011). Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J. Biol. Chem. 286, 34071–34081.Google Scholar

  • Hampton, M.B., Stamenkovic, I., and Winterbourn, C.C. (2002). Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett. 517, 229–232.Google Scholar

  • Hatahet, F., Boyd, D., and Beckwith, J. (2014). Disulfide bond formation in prokaryotes: history, diversity and design. Biochim. Biophys. Acta 1844, 1402–1414.Google Scholar

  • Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 396, 523–537.Google Scholar

  • Holmgren, A., Söderberg, B.O., Eklund, H., and Brändén, C.I. (1975). Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc. Natl. Acad. Sci. USA 72, 2305–2309.Google Scholar

  • Im, W.B., Sih, J.C., Blakeman, D.P., and McGrath, J.P. (1985). Omeprazole, a specific inhibitor of gastric (H+-K+)-ATPase, is a H+-activated oxidizing agent of sulfhydryl groups. J. Biol. Chem. 260, 4591–4597.Google Scholar

  • Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522–1530.Google Scholar

  • Jia, J., Arif, A., Terenzi, F., Willard, B., Plow, E.F., Hazen, S.L., and Fox, P.L. (2014). Target-selective protein s-nitrosylation by sequence motif recognition. Cell 159, 623–634.Google Scholar

  • Kadokura, H. and Beckwith, J. (2010). Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid. Redox Signal. 13, 1231–1246.Google Scholar

  • Kwon, J., Lee, S.-R., Yang, K.-S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419–16424.Google Scholar

  • Lee, B.C., Péterfi, Z., Hoffmann, F.W., Moore, R.E., Kaya, A., Avanesov, A., Tarrago, L., Zhou, Y., Weerapana, E., Fomenko, D.E., et al. (2013). MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell 51, 397–404.Google Scholar

  • Leichert, L.I. and Jakob, U. (2004). Protein thiol modifications visualized in vivo. PLoS Biol. 2, e333.CrossrefGoogle Scholar

  • Leichert, L.I. and Jakob, U. (2006). Global methods to monitor the thiol-disulfide state of proteins in vivo. Antioxid. Redox Signal. 8, 763–772.Google Scholar

  • Leichert, L.I., Gehrke, F., Gudiseva, H.V., Blackwell, T., Ilbert, M., Walker, A.K., Strahler, J.R., Andrews, P.C., and Jakob, U. (2008). Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 105, 8197–8202.Google Scholar

  • Li, L. and Shaw, P.E. (2006). Elevated activity of STAT3C due to higher DNA binding affinity of phosphotyrosine dimer rather than covalent dimer formation. J. Biol. Chem. 281, 33172–33181.Google Scholar

  • Li, L., Cheung, S.H., Evans, E.L., and Shaw, P.E. (2010). Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res 70, 8222–8232.CrossrefGoogle Scholar

  • Lindemann, C. and Leichert, L.I. (2012). Quantitative redox proteomics: the NOxICAT method. Methods Mol. Biol. 893, 387–403.Google Scholar

  • Lindemann, C., Lupilova, N., Müller, A., Warscheid, B., Meyer, H.E., Kuhlmann, K., Eisenacher, M. and Leichert, L.I. (2013). Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J. Biol. Chem. 288, 19698–19714.Google Scholar

  • Liu, Q., Wang, H., Liu, H., Teng, M., and Li, X. (2012). Preliminary crystallographic analysis of glyceraldehyde-3-phosphate dehydrogenase 3 from Saccharomyces cerevisiae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 978–980.Google Scholar

  • Lu, C.-T., Huang, K.-Y., Su, M.-G., Lee, T.-Y., Bretaña, N.A., Chang, W.-C., Chen, Y.-J., Chen, Y.-J., and Huang, H.-D. (2013). DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 41, D295–D305.Google Scholar

  • Luo, D., Smith, S.W., and Anderson, B.D. (2005). Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci. 94, 304–316.Google Scholar

  • Luo, M., Zhang, J., He, H., Su, D., Chen, Q., Gross, M.L., Kelley, M.R., and Georgiadis, M.M. (2012). Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemistry 51, 695–705.Google Scholar

  • Morinaka, A., Yamada, M., Itofusa, R., Funato, Y., Yoshimura, Y., Nakamura, F., Yoshimura, T., Kaibuchi, K., Goshima, Y., Hoshino, M., et al. (2011). Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal. 4, ra26.CrossrefGoogle Scholar

  • Nagy, P. (2013). Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal. 18, 1623–1641.Google Scholar

  • Oka, O.B.V. and Bulleid, N.J. (2013). Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2425–2429.Google Scholar

  • Ordway, J.M., Eberhart, D., and Curran, T. (2003). Cysteine 64 of Ref-1 is not essential for redox regulation of AP-1 DNA binding. Mol. Cell. Biol. 23, 4257–4266.Google Scholar

  • Pattison, D.I., and Davies, M.J. (2001). Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464.CrossrefGoogle Scholar

  • Peralta, D., Bronowska, A.K., Morgan, B., Dóka, É., Van Laer, K., Nagy, P., Gräter, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163.Google Scholar

  • Pineda-Molina, E., Klatt, P., Vázquez, J., Marina, A., García de Lacoba, M., Pérez-Sala, D., and Lamas, S. (2001). Glutathionylation of the p50 subunit of NF-κB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40, 14134–14142.Google Scholar

  • Prysyazhna, O., Rudyk, O., and Eaton, P. (2012). Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat. Med. 18, 286–290.Google Scholar

  • Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250.Google Scholar

  • Rothwell, D.G., Barzilay, G., Gorman, M., Morera, S., Freemont, P., and Hickson, I.D. (1997). The structure and functions of the HAP1/Ref-1 protein. Oncol. Res. 9, 275–280.Google Scholar

  • Sanchez, R., Riddle, M., Woo, J., and Momand, J. (2008). Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci 17, 473–481.Google Scholar

  • Schein, C.H. (1990). Solubility as a function of protein structure and solvent components. Biotechnology (N.Y.) 8, 308–317.Google Scholar

  • Schröder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., and Isupov, M.N. (2000). Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8, 605–615.Google Scholar

  • Sobotta, M.C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N.D., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70.Google Scholar

  • Sun, M.-A., Wang, Y., Cheng, H., Zhang, Q., Ge, W., and Guo, D. (2012). RedoxDB--a curated database for experimentally verified protein oxidative modification. Bioinformatics 28, 2551–2552.Google Scholar

  • Trost, B. and Kusalik, A. (2011). Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27, 2927–2935.Google Scholar

  • UniProt Consortium (2014). Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198.CrossrefGoogle Scholar

  • Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., and Morgan, B.A. (2003). Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896–30904.Google Scholar

  • Walker, L.J., Robson, C.N., Black, E., Gillespie, D., and Hickson, I.D. (1993). Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol. Cell. Biol. 13, 5370–5376.Google Scholar

  • Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M., Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., et al. (2014). Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230.CrossrefGoogle Scholar

  • Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286.CrossrefGoogle Scholar

  • Wojdyla, K., Williamson, J., Roepstorff, P., and Rogowska-Wrzesinska, A. (2015). The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations. J. Proteomics 113, 415–434.Google Scholar

  • Xu, Z., Lam, L.S.M., Lam, L.H., Chau, S.F., Ng, T.B., and Au, S.W.N. (2008). Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J. 22, 127–137.CrossrefGoogle Scholar

  • Xue, Y., Gao, X., Cao, J., Liu, Z., Jin, C., Wen, L., Yao, X., and Ren, J. (2010). A summary of computational resources for protein phosphorylation. Curr. Protein Pept. Sci. 11, 485–496.Google Scholar

  • Zhang, H., Zhang, T., Chen, K., Shen, S., Ruan, J., and Kurgan, L. (2009). On the relation between residue flexibility and local solvent accessibility in proteins. Proteins 76, 617–636.Google Scholar

About the article

Corresponding authors: Lars I. Leichert, Ruhr-Universität Bochum, Institute of Biochemistry and Pathobiochemistry – Microbial Biochemistry, Universitätsstr. 150, D-44780 Bochum, Germany, e-mail: ; and Tobias P. Dick, Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, e-mail:


Received: 2014-12-14

Accepted: 2015-02-21

Published Online: 2015-02-25

Published in Print: 2015-05-01


Citation Information: Biological Chemistry, Volume 396, Issue 5, Pages 389–399, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0314.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christina Wolf, Rahel Zimmermann, Osamah Thaher, Diones Bueno, Verena Wüllner, Michael K.E. Schäfer, Philipp Albrecht, and Axel Methner
Cells, 2019, Volume 8, Number 10, Page 1289
[2]
Kathrin Ulrich and Ursula Jakob
Free Radical Biology and Medicine, 2019
[3]
Sandra Backes, Sriram G Garg, Laura Becker, Valentina Peleh, Rudi Glockshuber, Sven B Gould, Johannes M Herrmann, and Manolo Gouy
Molecular Biology and Evolution, 2019, Volume 36, Number 4, Page 742
[4]
Arianna Carolina Rosa, Elisa Benetti, Margherita Gallicchio, Valentina Boscaro, Luigi Cangemi, Chiara Dianzani, and Gianluca Miglio
PROTEOMICS, 2019, Volume 19, Number 4, Page 1800301
[5]
Paraskevi Kritsiligkou, Jonathan D. Rand, Alan J. Weids, Ximeng Wang, Chris J. Kershaw, and Chris M. Grant
Journal of Biological Chemistry, 2018, Volume 293, Number 31, Page 11984
[6]
Jesalyn A. Bolduc, Kimberly J. Nelson, Alexina C. Haynes, Jingyun Lee, Julie A. Reisz, Aaron H. Graff, Jill E. Clodfelter, Derek Parsonage, Leslie B. Poole, Cristina M. Furdui, and W. Todd Lowther
Journal of Biological Chemistry, 2018, Volume 293, Number 30, Page 11901
[7]
Carmen Herrero-de-Dios, Alison M. Day, Anna T. Tillmann, Stavroula L. Kastora, David Stead, Paula S. Salgado, Janet Quinn, Alistair J. P. Brown, and Michael Lorenz
mBio, 2018, Volume 9, Number 2, Page e02229-17
[8]
Eva Richard, Lorena Gallego-Villar, Ana Rivera-Barahona, Alfonso Oyarzábal, Belén Pérez, Pilar Rodríguez-Pombo, and Lourdes R. Desviat
Oxidative Medicine and Cellular Longevity, 2018, Volume 2018, Page 1
[10]
Eric R. DeLeon, Yan Gao, Evelyn Huang, Maaz Arif, Nitin Arora, Alexander Divietro, Shivali Patel, and Kenneth R. Olson
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2016, Volume 310, Number 7, Page R549
[11]
Inken Lorenzen, Lisa Mullen, Sander Bekeschus, and Eva-Maria Hanschmann
Oxidative Medicine and Cellular Longevity, 2017, Volume 2017, Page 1
[12]
Sophie Vriz
Seminars in Cell & Developmental Biology, 2017
[13]
Mauricio Olguín-Albuerne and Julio Morán
Antioxidants & Redox Signaling, 2017
[14]
Matthew E. Albertolle, Donghak Kim, Leslie D. Nagy, Chul-Ho Yun, Ambra Pozzi, Üzen Savas, Eric F. Johnson, and F. Peter Guengerich
Journal of Biological Chemistry, 2017, Volume 292, Number 27, Page 11230
[15]
Alexander Dietl and Christoph Maack
Current Heart Failure Reports, 2017, Volume 14, Number 4, Page 338
[16]
Carsten Berndt and Christopher Horst Lillig
Antioxidants & Redox Signaling, 2017
[17]
Melanie Hillion, Jörg Bernhardt, Tobias Busche, Martina Rossius, Sandra Maaß, Dörte Becher, Mamta Rawat, Markus Wirtz, Rüdiger Hell, Christian Rückert, Jörn Kalinowski, and Haike Antelmann
Scientific Reports, 2017, Volume 7, Number 1
[18]
Bruno Manta and Vadim N. Gladyshev
Free Radical Biology and Medicine, 2017, Volume 109, Page 141
[19]
Dmitry S. Bilan and Vsevolod V. Belousov
Free Radical Biology and Medicine, 2017, Volume 109, Page 167
[20]
Kristin M. Allan, Matthew A. Loberg, Juliet Chepngeno, Jennifer E. Hurtig, Susmit Tripathi, Min Goo Kang, Jonathan K. Allotey, Afton H. Widdershins, Jennifer M. Pilat, Herbert J. Sizek, Wesley J. Murphy, Matthew R. Naticchia, Joseph B. David, Kevin A. Morano, and James D. West
Free Radical Biology and Medicine, 2016, Volume 101, Page 356
[21]
Kerstin C. Wagener, Benedikt Kolbrink, Katharina Dietrich, Kathrin M. Kizina, Lukas S. Terwitte, Belinda Kempkes, Guobin Bao, and Michael Müller
Antioxidants & Redox Signaling, 2016, Volume 25, Number 1, Page 41
[22]
Gianluca Miglio, Alessandro Damiano Sabatino, Eleonora Veglia, Maria Teresa Giraudo, Marco Beccuti, and Francesca Cordero
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2016, Volume 1864, Number 2, Page 211

Comments (0)

Please log in or register to comment.
Log in