Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 5

Issues

Highlight: Dynamics of Thiol-Based Redox Switches

Johannes M. Herrmann / Katja Becker / Tobias P. Dick
Published Online: 2015-04-09 | DOI: https://doi.org/10.1515/hsz-2015-0135

References

  • Breckwoldt, M.O., Wittmann, C., Misgeld, T., Kerschensteiner, M., and Grabher C. (2015). Redox imaging using genetically encoded redox indicators in zebrafish and mice. Biol. Chem. 396, 511–522.Web of ScienceGoogle Scholar

  • Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481.Google Scholar

  • Deponte, M. and Lillig, C.H. (2015). Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396, 401–413.Web of ScienceGoogle Scholar

  • Dietz, K.J. and Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol. Chem. 396, 483–494.Google Scholar

  • Gutsche, N., Thurow, C., Zachgo, S., and Gatz, C. (2015). Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses. Biol. Chem. 396, 495–509.Web of ScienceGoogle Scholar

  • Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., and Scheibe, R. (2015). Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem. 396, 523–537.Web of ScienceGoogle Scholar

  • Hillion, M. and Antelmann, H. (2015). Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444.Web of ScienceGoogle Scholar

  • Klomsiri, C., Karplus, P.A., and Poole, L.B. (2011). Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 14, 1065–1077.Web of ScienceGoogle Scholar

  • Kojer, K., Bien, M., Gangel, H., Morgan, B., Dick, T.P., and Riemer, J. (2012). Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J. 31, 3169–3182.Web of ScienceGoogle Scholar

  • Leichert, L.I. and Dick, T.P. (2015). Incidence and physiological relevance of protein thiol switches. Biol. Chem. 396, 389–399.Web of ScienceGoogle Scholar

  • Morgan, B., Ezerina, D., Amoako, T.N., Riemer, J., Seedorf, M., and Dick, T.P. (2013). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9, 119–125.Web of ScienceGoogle Scholar

  • Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163.Web of ScienceGoogle Scholar

  • Rahbari, M., Diederich, K., Becker, K., Krauth-Siegel, L., and Jortzik, E. (2015). Detection of thiol-based redox switch processes in parasites – facts and future. Biol. Chem. 396, 445–463.Web of ScienceGoogle Scholar

  • Rhee, S.G. and Woo, H.A. (2011). Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid. Redox Signal. 15, 781–794.Web of ScienceGoogle Scholar

  • Riemer, J., Schwarzländer, M., Conrad., M., and Herrmann, J.M. (2015). Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 396, 465–482.Web of ScienceGoogle Scholar

  • Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183.Web of ScienceGoogle Scholar

  • Simeoni, L. and Bogeski, I. (2015). Redox regulation of T-cell receptor signaling. Biol. Chem. 396, 555–568.Google Scholar

  • Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70.Google Scholar

  • Suzuki, Y. and Schmitt, M.J. (2015). Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle. Biol. Chem. 396, 539–554.Web of ScienceGoogle Scholar

About the article

Published Online: 2015-04-09

Published in Print: 2015-05-01


Citation Information: Biological Chemistry, Volume 396, Issue 5, Pages 385–387, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0135.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kathrin Ulrich and Ursula Jakob
Free Radical Biology and Medicine, 2019
[2]
Julius Grosche, Juliane Meißner, and Johannes A. Eble
Molecular Aspects of Medicine, 2018
[3]
Marcel Imber, Nguyen Thi Thu Huyen, Agnieszka J. Pietrzyk-Brzezinska, Vu Van Loi, Melanie Hillion, Jörg Bernhardt, Lena Thärichen, Katra Kolšek, Malek Saleh, Chris J. Hamilton, Lorenz Adrian, Frauke Gräter, Markus C. Wahl, and Haike Antelmann
Antioxidants & Redox Signaling, 2017

Comments (0)

Please log in or register to comment.
Log in