Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 6-7

Issues

Sphingolipids in viral infection

Jürgen Schneider-Schaulies
  • Corresponding author
  • Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sibylle Schneider-Schaulies
  • Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-20 | DOI: https://doi.org/10.1515/hsz-2014-0273

Abstract

Viruses exploit membranes and their components such as sphingolipids in all steps of their life cycle including attachment and membrane fusion, intracellular transport, replication, protein sorting and budding. Examples for sphingolipid-dependent virus entry are found for: human immunodeficiency virus (HIV), which besides its protein receptors also interacts with glycosphingolipids (GSLs); rhinovirus, which promotes the formation of ceramide-enriched platforms and endocytosis; or measles virus (MV), which induces the surface expression of its own receptor CD150 via activation of sphingomyelinases (SMases). While SMase activation was implicated in Ebola virus (EBOV) attachment, the virus utilizes the cholesterol transporter Niemann-Pick C protein 1 (NPC1) as ‘intracellular’ entry receptor after uptake into endosomes. Differential activities of SMases also affect the intracellular milieu required for virus replication. Sindbis virus (SINV), for example, replicates better in cells lacking acid SMase (ASMase). Defined lipid compositions of viral assembly and budding sites influence virus release and infectivity, as found for hepatitis C virus (HCV) or HIV. And finally, viruses manipulate cellular signaling and the sphingolipid metabolism to their advantage, as for example influenza A virus (IAV), which activates sphingosine kinase 1 and the transcription factor NF-κB.

Keywords: ceramide; sphingolipids; sphingomyelinase; sphingosine kinase; viruses

References

  • Alfsen, A. and Bomsel, M. (2002). HIV-1 gp41 envelope residues 650–685 exposed on native virus act as a lectin to bind epithelial cell galactosyl ceramide. J. Biol. Chem. 277, 25649–25659.Google Scholar

  • Alvisi, G., Madan, V., and Bartenschlager, R. (2011). Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol. 8, 258–269.PubMedCrossrefGoogle Scholar

  • Amako, Y., Syed, G.H., and Siddiqui, A. (2011). Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J. Biol. Chem. 286, 11265–11274.Google Scholar

  • Avota, E., Gulbins, E., and Schneider-Schaulies, S. (2011). DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 7, e1001290.CrossrefGoogle Scholar

  • Blanchet, F., Moris, A., Mitchell, J.P., and Piguet, V. (2011). A look at HIV journey: from dendritic cells to infection spread in CD4+ T cells. Curr. Opin. HIV AIDS 6, 391–397.CrossrefGoogle Scholar

  • Bollinger, C.R., Teichgraber, V., and Gulbins, E. (2005). Ceramide-enriched membrane domains. Biochim. Biophys. Acta 1746, 284–294.Google Scholar

  • Bonsch, C., Zuercher, C., Lieby, P., Kempf, C., and Ros, C. (2010). The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J. Virol. 84, 11737–11746.Google Scholar

  • Brugger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., and Krausslich, H.G. (2006). The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. USA 103, 2641–2646.Google Scholar

  • Burckhardt, C.J. and Greber, U.F. (2009). Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog. 5, e1000621.CrossrefGoogle Scholar

  • Burckhardt, C.J., Suomalainen, M., Schoenenberger, P., Boucke, K., Hemmi, S., and Greber, U.F. (2011). Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host. Microb. 10, 105–117.CrossrefGoogle Scholar

  • Carette, J.E., Raaben, M., Wong, A.C., Herbert, A.S., Obernosterer, G., Mulherkar, N., Kuehne, A.I., Kranzusch, P.J., Griffin, A.M., Ruthel, G., et al. (2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343.Google Scholar

  • Cook, D.G., Fantini, J., Spitalnik, S.L., and Gonzalez-Scarano, F. (1994). Binding of human immunodeficiency virus type I (HIV-1) gp120 to galactosylceramide (GalCer): relationship to the V3 loop. Virology 201, 206–214.Google Scholar

  • Cote, M., Misasi, J., Ren, T., Bruchez, A., Lee, K., Filone, C.M., Hensley, L., Li, Q., Ory, D., Chandran, K., et al. (2011). Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348.Google Scholar

  • Dai, L., Plaisance-Bonstaff, K., Voelkel-Johnson, C., Smith, C.D., Ogretmen, B., Qin, Z., and Parsons, C. (2014). Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells. PLoS One 9, e102314.Google Scholar

  • Dorosko, S.M. and Connor, R.I. (2010). Primary human mammary epithelial cells endocytose HIV-1 and facilitate viral infection of CD4+ T lymphocytes. J. Virol. 84, 10533–10542.Google Scholar

  • Dreschers, S., Franz, P., Dumitru, C., Wilker, B., Jahnke, K., and Gulbins, E. (2007). Infections with human rhinovirus induce the formation of distinct functional membrane domains. Cell Physiol. Biochem. 20, 241–254.PubMedGoogle Scholar

  • Dumitru, C.A., Dreschers, S., and Gulbins, E. (2006). Rhinoviral infections activate p38MAP-kinases via membrane rafts and RhoA. Cell Physiol. Biochem. 17, 159–166.CrossrefGoogle Scholar

  • Ewers, H., Smith, A.E., Sbalzarini, I.F., Lilie, H., Koumoutsakos, P., and Helenius, A. (2005). Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl. Acad. Sci. USA 102, 15110–15115.Google Scholar

  • Finnegan, C.M. and Blumenthal, R. (2006). Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res. 69, 116–123.Google Scholar

  • Finnegan, C.M., Rawat, S.S., Puri, A., Wang, J.M., Ruscetti, F.W., and Blumenthal, R. (2004). Ceramide, a target for antiretroviral therapy. Proc. Natl. Acad. Sci. USA 101, 15452–15457.Google Scholar

  • Finnegan, C.M., Rawat, S.S., Cho, E.H., Guiffre, D.L., Lockett, S., Merrill, A.H., Jr., and Blumenthal, R. (2007). Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J. Virol. 81, 5294–5304.Google Scholar

  • Fischl, W. and Bartenschlager, R. (2011). Exploitation of cellular pathways by Dengue virus. Curr Opin Microbiol. 14, 470–475.CrossrefPubMedGoogle Scholar

  • Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5, e1000623.CrossrefGoogle Scholar

  • Geijtenbeek, T.B. and Gringhuis, S.I. (2009). Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479.PubMedCrossrefGoogle Scholar

  • Gerl, M.J., Sampaio, J.L., Urban, S., Kalvodova, L., Verbavatz, J.M., Binnington, B., Lindemann, D., Lingwood, C.A., Shevchenko, A., Schroeder, C., et al. (2012). Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell. Biol. 196, 213–221.Google Scholar

  • Grassme, H., Riehle, A., Wilker, B., and Gulbins, E. (2005). Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J. Biol. Chem. 280, 26256–26262.Google Scholar

  • Grassme, H., Riethmuller, J., and Gulbins, E. (2007). Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170.PubMedCrossrefGoogle Scholar

  • Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., and Geijtenbeek, T.B. (2009). Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10, 1081–1088.CrossrefGoogle Scholar

  • Gulbins, E. and Grassme, H. (2002). Ceramide and cell death receptor clustering. Biochim. Biophys. Acta 1585, 139–145.Google Scholar

  • Gulbins, E., Dreschers, S., Wilker, B., and Grassme, H. (2004). Ceramide, membrane rafts and infections. J. Mol. Med. 82, 357–363.CrossrefGoogle Scholar

  • Hammache, D., Pieroni, G., Yahi, N., Delezay, O., Koch, N., Lafont, H., Tamalet, C., and Fantini, J. (1998a). Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 273, 7967–7971.Google Scholar

  • Hammache, D., Yahi, N., Pieroni, G., Ariasi, F., Tamalet, C., and Fantini, J. (1998b). Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors. Biochem. Biophys. Res. Commun. 246, 117–122.Google Scholar

  • Harrison, A.L., Olsson, M.L., Jones, R.B., Ramkumar, S., Sakac, D., Binnington, B., Henry, S., Lingwood, C.A., and Branch, D.R. (2010). A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms. Glycoconj. J. 27, 515–524.PubMedGoogle Scholar

  • Hatch, S.C., Archer, J., and Gummuluru, S. (2009). Glycosphingolipid composition of human immunodeficiency virus type 1 (HIV-1) particles is a crucial determinant for dendritic cell-mediated HIV-1 trans-infection. J. Virol. 83, 3496–3506.CrossrefGoogle Scholar

  • Hayashi, Y., Nemoto-Sasaki, Y., Tanikawa, T., Oka, S., Tsuchiya, K., Zama, K., Mitsutake, S., Sugiura, T., and Yamashita, A. (2014). Sphingomyelin synthase 2, but not sphingomyelin synthase 1, is involved in HIV-1 envelope-mediated membrane fusion. J. Biol. Chem. 289, 30842–30856.Google Scholar

  • Holopainen, J.M., Angelova, M.I., and Kinnunen, P.K. (2000). Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 78, 830–838.PubMedCrossrefGoogle Scholar

  • Izquierdo-Useros, N., Naranjo-Gomez, M., Archer, J., Hatch, S.C., Erkizia, I., Blanco, J., Borras, F.E., Puertas, M.C., Connor, J.H., Fernandez-Figueras, M.T., et al. (2009). Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113, 2732–2741.Google Scholar

  • Izquierdo-Useros, N., Naranjo-Gomez, M., Erkizia, I., Puertas, M.C., Borras, F.E., Blanco, J., and Martinez-Picado, J. (2010). HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 6, e1000740.CrossrefGoogle Scholar

  • Izquierdo-Useros, N., Lorizate, M., Puertas, M.C., Rodriguez-Plata, M.T., Zangger, N., Erikson, E., Pino, M., Erkizia, I., Glass, B., Clotet, B., et al. (2012). Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 10, e1001448.Google Scholar

  • Jan, J.T., Chatterjee, S., and Griffin, D.E. (2000). Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J. Virol. 74, 6425–6432.CrossrefGoogle Scholar

  • Khan, F., Proulx, F., and Lingwood, C.A. (2009). Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int. 75, 1209–1216.PubMedCrossrefGoogle Scholar

  • Kumar, N., Xin, Z.T., Liang, Y., and Ly, H. (2008). NF-κB signaling differentially regulates influenza virus RNA synthesis. J. Virol. 82, 9880–9889.CrossrefGoogle Scholar

  • Lehmann, M.J., Sherer, N.M., Marks, C.B., Pypaert, M., and Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell. Biol. 170, 317–325.Google Scholar

  • Lingwood, C.A., Binnington, B., Manis, A., and Branch, D.R. (2010a). Globotriaosyl ceramide receptor function – where membrane structure and pathology intersect. FEBS Lett. 584, 1879–1886.Google Scholar

  • Lingwood, C.A., Manis, A., Mahfoud, R., Khan, F., Binnington, B., and Mylvaganam, M. (2010b). New aspects of the regulation of glycosphingolipid receptor function. Chem. Phys. Lipids 163, 27–35.Google Scholar

  • Lingwood, D. and Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–50.Google Scholar

  • Lingwood, D., Binnington, B., Rog, T., Vattulainen, I., Grzybek, M., Coskun, U., Lingwood, C.A., and Simons, K. (2011). Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262.PubMedCrossrefGoogle Scholar

  • Liu, S.T., Sharon-Friling, R., Ivanova, P., Milne, S.B., Myers, D.S., Rabinowitz, J.D., Brown, H.A., and Shenk, T. (2011). Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc. Natl. Acad. Sci. USA 108, 12869–12874.Google Scholar

  • Lund, N., Branch, D.R., Sakac, D., Lingwood, C.A., Siatskas, C., Robinson, C.J., Brady, R.O., and Medin, J.A. (2005). Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 19, 1543–1546.Google Scholar

  • Lund, N., Branch, D.R., Mylvaganam, M., Chark, D., Ma, X.Z., Sakac, D., Binnington, B., Fantini, J., Puri, A., Blumenthal, R., et al. (2006). A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 20, 333–343.PubMedCrossrefGoogle Scholar

  • Lund, N., Olsson, M.L., Ramkumar, S., Sakac, D., Yahalom, V., Levene, C., Hellberg, A., Ma, X.Z., Binnington, B., Jung, D., et al. (2009). The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 113, 4980–4991.Google Scholar

  • Machesky, N.J., Zhang, G., Raghavan, B., Zimmerman, P., Kelly, S.L., Merrill, A.H., Jr., Waldman, W.J., Van Brocklyn, J.R., and Trgovcich, J. (2008). Human cytomegalovirus regulates bioactive sphingolipids. J. Biol. Chem. 283, 26148–26160.Google Scholar

  • Magerus-Chatinet, A., Yu, H., Garcia, S., Ducloux, E., Terris, B., and Bomsel, M. (2007). Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 362, 67–74.Google Scholar

  • Mercer, J. and Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535.Google Scholar

  • Mercer, J. and Helenius, A. (2009). Virus entry by macropinocytosis. Nat. Cell. Biol. 11, 510–520.CrossrefPubMedGoogle Scholar

  • Merz, A., Long, G., Hiet, M.S., Brugger, B., Chlanda, P., Andre, P., Wieland, F., Krijnse-Locker, J., and Bartenschlager, R. (2011). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J. Biol. Chem. 286, 3018–3032.Google Scholar

  • Miller, E.H., Obernosterer, G., Raaben, M., Herbert, A.S., Deffieu, M.S., Krishnan, A., Ndungo, E., Sandesara, R.G., Carette, J.E., Kuehne, A.I., et al. (2012a). Ebola virus entry requires the host-programmed recognition of an intracellular receptor. Embo J. 31, 1947–1960.PubMedCrossrefGoogle Scholar

  • Miller, M.E., Adhikary, S., Kolokoltsov, A.A., and Davey, R.A. (2012b). Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J. Virol. 86, 7473–7483.CrossrefGoogle Scholar

  • Monick, M.M., Cameron, K., Powers, L.S., Butler, N.S., McCoy, D., Mallampalli, R.K., and Hunninghake, G.W. (2004). Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. Am. J. Respir. Cell. Mol. Biol. 30, 844–852.Google Scholar

  • Mothes, W., Sherer, N.M., Jin, J., and Zhong, P. (2010). Virus cell-to-cell transmission. J. Virol. 84, 8360–8368.CrossrefGoogle Scholar

  • Müller, N., Collenburg, L., Grssmé, H., and Schneider-Schaulies, S. (2014). Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog. 10, e1004574.CrossrefGoogle Scholar

  • Ng, C.G. and Griffin, D.E. (2006). Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J. Virol. 80, 10989–10999.CrossrefGoogle Scholar

  • Ng, C.G., Coppens, I., Govindarajan, D., Pisciotta, J., Shulaev, V., and Griffin, D.E. (2008). Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proc. Natl. Acad. Sci. USA 105, 16326–16331.Google Scholar

  • Perera, M.N., Ganesan, V., Siskind, L.J., Szulc, Z.M., Bielawski, J., Bielawska, A., Bittman, R., and Colombini, M. (2012). Ceramide channels: influence of molecular structure on channel formation in membranes. Biochim. Biophys. Acta 1818, 1291–1301.Google Scholar

  • Puri, A., Rawat, S.S., Lin, H.M., Finnegan, C.M., Mikovits, J., Ruscetti, F.W., and Blumenthal, R. (2004). An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 18, 849–858.PubMedCrossrefGoogle Scholar

  • Rahmaniyan, M., Curley, R.W., Jr., Obeid, L.M., Hannun, Y.A., and Kraveka, J.M. (2011). Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764.Google Scholar

  • Ramkumar, S., Sakac, D., Binnington, B., Branch, D.R., and Lingwood, C.A. (2009). Induction of HIV-1 resistance: cell susceptibility to infection is an inverse function of globotriaosyl ceramide levels. Glycobiology 19, 76–82.PubMedGoogle Scholar

  • Rawat, S.S., Gallo, S.A., Eaton, J., Martin, T.D., Ablan, S., KewalRamani, V.N., Wang, J.M., Blumenthal, R., and Puri, A. (2004). Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J. Virol. 78, 7360–7368.Google Scholar

  • Rawat, S.S., Zimmerman, C., Johnson, B.T., Cho, E., Lockett, S.J., Blumenthal, R., and Puri, A. (2008). Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol. Membr. Biol. 25, 830000–94.Google Scholar

  • Sainz, B., Jr., Barretto, N., Martin, D.N., Hiraga, N., Imamura, M., Hussain, S., Marsh, K.A., Yu, X., Chayama, K., Alrefai, W.A., et al. (2012). Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat. Med. 18, 281–285.Google Scholar

  • Schelhaas, M., Ewers, H., Rajamaki, M.L., Day, P.M., Schiller, J.T., and Helenius, A. (2008). Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog. 4, e1000148.CrossrefGoogle Scholar

  • Seo, Y.J., Blake, C., Alexander, S., and Hahm, B. (2010). Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity. J. Virol. 84, 8124–8131.Google Scholar

  • Seo, Y.J., Pritzl, C.J., Vijayan, M., Bomb, K., McClain, M.E., Alexander, S., and Hahm, B. (2013). Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS One 8, e75005.Google Scholar

  • Sherer, N.M., Lehmann, M.J., Jimenez-Soto, L.F., Horensavitz, C., Pypaert, M., and Mothes, W. (2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell. Biol. 9, 310–315.CrossrefPubMedGoogle Scholar

  • Tani, H., Shiokawa, M., Kaname, Y., Kambara, H., Mori, Y., Abe, T., Moriishi, K., and Matsuura, Y. (2010). Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 84, 2798–2807.CrossrefGoogle Scholar

  • Tanner, L.B., Chng, C., Guan, X.L., Lei, Z., Rozen, S.G., and Wenk, M.R. (2014). Lipidomics identifies a requirement for peroxisomal function during influenza virus replication. J. Lipid Res. 55, 1357–1365.Google Scholar

  • Utermohlen, O., Herz, J., Schramm, M., and Kronke, M. (2008). Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213, 307–314.Google Scholar

  • Vieira, C.R., Munoz-Olaya, J.M., Sot, J., Jimenez-Baranda, S., Izquierdo-Useros, N., Abad, J.L., Apellaniz, B., Delgado, R., Martinez-Picado, J., Alonso, A., et al. (2010). Dihydrosphingomyelin impairs HIV-1 infection by rigidifying liquid-ordered membrane domains. Chem Biol 17, 766–775.CrossrefPubMedGoogle Scholar

  • Vijayan, M. and Hahm, B. (2014). Influenza viral manipulation of sphingolipid metabolism and signaling to modulate host defense system. Scientifica (Cairo) 2014, 793815.PubMedGoogle Scholar

  • Vijayan, M., Seo, Y.J., Pritzl, C.J., Squires, S.A., Alexander, S., and Hahm, B. (2014). Sphingosine kinase 1 regulates measles virus replication. Virology 450–451, 55–63.Google Scholar

  • Voisset, C., Lavie, M., Helle, F., Op De Beeck, A., Bilheu, A., Bertrand-Michel, J., Terce, F., Cocquerel, L., Wychowski, C., Vu-Dac, N., et al. (2008). Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol. 10, 606–617.CrossrefGoogle Scholar

  • Walsh, K.B., Marsolais, D., Welch, M.J., Rosen, H., and Oldstone, M.B. (2010). Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology 397, 260–269.Google Scholar

  • Walsh, K.B., Teijaro, J.R., Wilker, P.R., Jatzek, A., Fremgen, D.M., Das, S.C., Watanabe, T., Hatta, M., Shinya, K., Suresh, M., et al. (2011). Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc. Natl. Acad. Sci. USA 108, 12018–12023.Google Scholar

  • Yamane, D., Zahoor, M.A., Mohamed, Y.M., Azab, W., Kato, K., Tohya, Y., and Akashi, H. (2009). Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J. Biol. Chem. 284, 13648–13659.Google Scholar

  • Yu, H., Alfsen, A., Tudor, D., and Bomsel, M. (2008). The binding of HIV-1 gp41 membrane proximal domain to its mucosal receptor, galactosyl ceramide, is structure-dependent. Cell Calcium 43, 73–82.Google Scholar

  • Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell. Biol. 181, 335–350.Google Scholar

  • Zha, X., Pierini, L.M., Leopold, P.L., Skiba, P.J., Tabas, I., and Maxfield, F.R. (1998). Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell. Biol. 140, 39–47.CrossrefGoogle Scholar

About the article

Corresponding author: Jürgen Schneider-Schaulies, Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany, e-mail:


Received: 2014-11-17

Accepted: 2014-12-12

Published Online: 2015-01-20

Published in Print: 2015-06-01


Citation Information: Biological Chemistry, Volume 396, Issue 6-7, Pages 585–595, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0273.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Benhur Lee
Nature Microbiology, 2018
[3]
Charlene Börtlein, Annette Draeger, Roman Schoenauer, Alexander Kuhlemann, Markus Sauer, Sibylle Schneider-Schaulies, and Elita Avota
Frontiers in Immunology, 2018, Volume 9
[4]
Lindsay Kosack, Riem Gawish, Alexander Lercher, Bojan Vilagos, Anastasiya Hladik, Karin Lakovits, Anannya Bhattacharya, Christopher Schliehe, Ildiko Mesteri, Sylvia Knapp, and Andreas Bergthaler
Scientific Reports, 2017, Volume 7, Number 1
[5]
Miguel A. Martín-Acebes, Enrique Gabandé-Rodríguez, Ana M. García-Cabrero, Marina P. Sánchez, María Dolores Ledesma, Francisco Sobrino, and Juan-Carlos Saiz
Journal of Lipid Research, 2016, Volume 57, Number 3, Page 422
[6]
Timothy Rohrbach, Michael Maceyka, and Sarah Spiegel
Critical Reviews in Biochemistry and Molecular Biology, 2017, Page 1
[7]
Cristiano Salata, Arianna Calistri, Cristina Parolin, Aldo Baritussio, and Giorgio Palù
Expert Review of Anti-infective Therapy, 2017, Volume 15, Number 5, Page 483
[8]
Wen-Juan Jiao, Fei-Qiang Li, Yue-Liang Bai, Xiao-Xiao Shi, Mu-Fei Zhu, Min-Jing Zhang, Cun-Gui Mao, and Zeng-Rong Zhu
Journal of Insect Science, 2017, Volume 17, Number 1, Page 16
[9]
Andrew J. Chetwynd, Amanda Samarawickrama, Jaime H. Vera, Stephen A. Bremner, Alaa Abdul-Sada, Yvonne Gilleece, Stephen G. Holt, and Elizabeth M. Hill
JAIDS Journal of Acquired Immune Deficiency Syndromes, 2017, Volume 74, Number 2, Page e45
[10]
Makoto Taniguchi, Takafumi Tasaki, Hideaki Ninomiya, Yoshibumi Ueda, Koh-ichi Kuremoto, Susumu Mitsutake, Yasuyuki Igarashi, Toshiro Okazaki, and Tsutomu Takegami
Scientific Reports, 2016, Volume 6, Number 1
[11]
Miguel A. Martín-Acebes, Ángela Vázquez-Calvo, and Juan-Carlos Saiz
Progress in Lipid Research, 2016, Volume 64, Page 123
[12]
Robert K. Naviaux, Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Lin Wang, Asha Baxter, Neil Nathan, Wayne Anderson, and Eric Gordon
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 37, Page E5472
[13]
Daniel Sepúlveda-Crespo, Rafael Ceña-Díez, José Luis Jiménez, and Ma Ángeles Muñoz-Fernández
Medicinal Research Reviews, 2017, Volume 37, Number 1, Page 149
[14]
Irene Crespo, Beatriz San-Miguel, Diana I. Sánchez, Bárbara González-Fernández, Marcelino Álvarez, Javier González-Gallego, and María J. Tuñón
Journal of Pineal Research, 2016, Volume 61, Number 2, Page 168
[15]
Shilo Rosenwasser, Carmit Ziv, Shiri Graff van Creveld, and Assaf Vardi
Trends in Microbiology, 2016, Volume 24, Number 10, Page 821
[16]
Marthe-Susanna Wegner, Susanne Schiffmann, Michael John Parnham, Gerd Geisslinger, and Sabine Grösch
Progress in Lipid Research, 2016, Volume 63, Page 93
[17]
Carmit Ziv, Sergey Malitsky, Alaa Othman, Shifra Ben-Dor, Yu Wei, Shuning Zheng, Asaph Aharoni, Thorsten Hornemann, and Assaf Vardi
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 13, Page E1907
[18]
Boaz Job van Driel, Gongxian Liao, Pablo Engel, and Cox Terhorst
Frontiers in Immunology, 2016, Volume 7
[19]
Nicholas S. Heaton, Natasha Moshkina, Romain Fenouil, Thomas J. Gardner, Sebastian Aguirre, Priya S. Shah, Nan Zhao, Lara Manganaro, Judd F. Hultquist, Justine Noel, David Sachs, Jennifer Hamilton, Paul E. Leon, Amit Chawdury, Shashank Tripathi, Camilla Melegari, Laura Campisi, Rong Hai, Giorgi Metreveli, Andrea V. Gamarnik, Adolfo García-Sastre, Benjamin Greenbaum, Viviana Simon, Ana Fernandez-Sesma, Nevan J. Krogan, Lubbertus C.F. Mulder, Harm van Bakel, Domenico Tortorella, Jack Taunton, Peter Palese, and Ivan Marazzi
Immunity, 2016, Volume 44, Number 1, Page 46
[20]
Pavlina T. Ivanova, David S. Myers, Stephen B. Milne, Jennifer L. McClaren, Paul G. Thomas, and H. Alex Brown
ACS Infectious Diseases, 2015, Volume 1, Number 9, Page 435

Comments (0)

Please log in or register to comment.
Log in