Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 396, Issue 6-7


Subcellular distribution of FTY720 and FTY720-phosphate in immune cells – another aspect of Fingolimod action relevant for therapeutic application

Matthias Schröder / Olga Arlt
  • Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Building 75, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helmut Schmidt
  • Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, D-60590 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Huwiler / Carlo Angioni
  • Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, D-60590 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef M. Pfeilschifter
  • Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Building 75, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anja Schwiebs
  • Corresponding author
  • Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Building 75, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heinfried H. Radeke
  • Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Building 75, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-14 | DOI: https://doi.org/10.1515/hsz-2014-0287


FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates.

Keywords: lymphocytes; mass-spectrometry; multiple sclerosis; sphingosine kinase; sphingosine 1-phosphate; subcellular compartment


  • Alemany, R., van Koppen, C.J., Danneberg, K., Ter Braak, M., and Meyer Zu Heringdorf, D. (2007). Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374, 413–428.Web of ScienceGoogle Scholar

  • Anada, Y., Igarashi, Y., and Kihara, A. (2007). The immunomodulator FTY720 is phosphorylated and released from platelets. Eur. J. Pharmacol. 568, 106–111.Web of ScienceGoogle Scholar

  • Arlt, O., Schwiebs, A., Japtok, L., Ruger, K., Katzy, E., Kleuser, B., and Radeke, H.H. (2014). Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. Cell. Physiol. Biochem. 34, 27–44.Web of ScienceGoogle Scholar

  • Bandhuvula, P., Tam, Y.Y., Oskouian, B., and Saba, J.D. (2005). The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J. Biol. Chem. 280, 33697–33700.Google Scholar

  • Blaho, V.A. and Hla, T. (2014). An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 55, 1596–1608.Web of ScienceGoogle Scholar

  • Blom, T., Back, N., Mutka, A.L., Bittman, R., Li, Z., de Lera, A., Kovanen, P.T., Diczfalusy, U., and Ikonen, E. (2010). FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ. Res. 106, 720–729.Web of ScienceCrossrefGoogle Scholar

  • Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S., and Burtin, P. (2010). Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897.Web of ScienceGoogle Scholar

  • Bryan, L., Kordula, T., Spiegel, S., and Milstien, S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochim. Biophys. Acta 1781, 459–466.Web of ScienceGoogle Scholar

  • Cartwright, T.A., Campos, C.R., Cannon, R.E., and Miller, D.S. (2013). Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers. J. Cereb. Blood Flow Metab. 33, 381–388.Google Scholar

  • Cinamon, G., Zachariah, M.A., Lam, O.M., Foss, F.W., and Cyster, J.G. (2008). Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9, 54–62.Web of ScienceGoogle Scholar

  • Ferreirós, N., Labocha, S., Schröder, M., Radeke, H.H., and Geisslinger, G. (2012). LC-MS/MS determination of FTY720 and FTY720-phosphate in murine intracellular compartments and human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 887–888, 122–127.Google Scholar

  • Fukuhara, S., Simmons, S., Kawamura, S., Inoue, A., Orba, Y., Tokudome, T., Sunden, Y., Arai, Y., Moriwaki, K., Ishida, J., et al. (2012). The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Invest. 122, 1416–1426.Web of ScienceGoogle Scholar

  • Hait, N.C., Allegood, J., Maceyka, M., Strub, G.M., Harikumar, K.B., Singh, S.K., Luo, C., Marmorstein, R., Kordula, T., Milstien, S. et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257.Web of ScienceGoogle Scholar

  • Hisano, Y., Kobayashi, N., Kawahara, A., Yamaguchi, A., and Nishi, T. (2011). The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J. Biol. Chem. 286, 1758–1766.Web of ScienceGoogle Scholar

  • Honig, S.M., Fu, S., Mao, X., Yopp, A., Gunn, M.D., Randolph, G.J., and Bromberg, J.S. (2003). FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J. Clin. Invest. 111, 627–637.Google Scholar

  • Huwiler, A. and Pfeilschifter, J. (2008). New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem. Pharmacol. 75, 1893–1900.Web of ScienceGoogle Scholar

  • Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., and Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839.Google Scholar

  • Kappos, L., Radue, E.W., O’Connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K., Agoropoulou, C., Leyk, M., Zhang-Auberson, L., et al. (2010). A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401.Web of ScienceGoogle Scholar

  • Lim, K.G., Sun, C., Bittman, R., Pyne, N.J., and Pyne, S. (2011). (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell. Signal. 23, 1590–1595.Web of ScienceGoogle Scholar

  • Limaye, V. (2008). The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. Endothelium 15, 101–112.Web of ScienceGoogle Scholar

  • Liu, M., Seo, J., Allegood, J., Bi, X., Zhu, X., Boudyguina, E., Gebre, A.K., Avni, D., Shah, D., Sorci-Thomas, M.G. et al. (2014). Hepatic apolipoprotein M (ApoM) overexpression stimulates formation of larger ApoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. J. Biol. Chem. 289, 2801–2814.Web of ScienceGoogle Scholar

  • Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G.J., Card, D., Keohane, C., et al. (2002). Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349.Google Scholar

  • Matloubian, M., Lo, C.G., Cinamon, G., Lesneski, M.J., Xu, Y., Brinkmann, V., Allende, M.L., Proia, R.L., and Cyster, J.G. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360.Google Scholar

  • Moriue, T., Igarashi, J., Yoneda, K., Nakai, K., Kosaka, H. and Kubota, Y. (2008). Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. Biochem. Biophys. Res. Commun. 368, 852–857.Web of ScienceGoogle Scholar

  • Neumann, S. and van Meer, G. (2008). Sphingolipid management by an orchestra of lipid transfer proteins. Biol. Chem. 389, 1349–1360.Web of ScienceGoogle Scholar

  • Nishi, T., Kobayashi, N., Hisano, Y., Kawahara, A. and Yamaguchi, A. (2014). Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim. Biophys. Acta 1841, 759–765.Web of ScienceGoogle Scholar

  • Oo, M.L., Chang, S.H., Thangada, S., Wu, M.T., Rezaul, K., Blaho, V., Hwang, S.I., Han, D.K., and Hla, T. (2011). Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. J. Clin. Invest. 121, 2290–2300.Web of ScienceGoogle Scholar

  • Oskeritzian, C.A., Alvarez, S.E., Hait, N.C., Price, M.M., Milstien, S., and Spiegel, S. (2008). Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111, 4193–4200.Web of ScienceGoogle Scholar

  • Paugh, S.W., Payne, S.G., Barbour, S.E., Milstien, S., and Spiegel, S. (2003). The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 554, 189–193.Google Scholar

  • Payne, S.G., Oskeritzian, C.A., Griffiths, R., Subramanian, P., Barbour, S.E., Chalfant, C.E., Milstien, S., and Spiegel, S. (2007). The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109, 1077–1085.Web of ScienceGoogle Scholar

  • Price, M.M., Oskeritzian, C.A., Falanga, Y.T., Harikumar, K.B., Allegood, J.C., Alvarez, S.E., Conrad, D., Ryan, J.J., Milstien, S., and Spiegel, S. (2013). A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J. Allergy Clin. Immunol. 131, 501–511. e501.Google Scholar

  • Qin, J., E. Berdyshev, Goya, J., Natarajan, V., and Dawson, G. (2010). Neurons and oligodendrocytes recycle sphingosine 1-phosphate to ceramide: significance for apoptosis and multiple sclerosis. J. Biol. Chem. 285, 14134–14143.Web of ScienceGoogle Scholar

  • Rathmell, J.C., Farkash, E.A., Gao, W., and Thompson, C.B. (2001). IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167, 6869–6876.Google Scholar

  • Saddoughi, S.A., Song, P., and Ogretmen, B. (2008). Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell. Biochem. 49, 413–440.Google Scholar

  • Saddoughi, S.A., Gencer, S., Peterson, Y.K., Ward, K.E., Mukhopadhyay, A., Oaks, J., Bielawski, J., Szulc, Z.M., Thomas, R.J., Selvam, S.P., et al. (2013). Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121.Web of ScienceGoogle Scholar

  • Schwab, S.R., Pereira, J.P., Matloubian, M., Xu, Y., Huang, Y., and Cyster, J.G. (2005). Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739.Google Scholar

  • Sensken, S.C., Bode, C., and Graler, M.H. (2009). Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J. Pharmacol. Exp. Ther. 328, 963–969.Web of ScienceGoogle Scholar

  • Simons, K. and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202.Google Scholar

  • Skoura, A. and Hla, T. (2009). Lysophospholipid receptors in vertebrate development, physiology, and pathology. J. Lipid Res. 50 (Suppl.), S293–298.Web of ScienceGoogle Scholar

  • Spiegel, S. and Milstien, S. (2011). The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415.Google Scholar

  • van Meer, G. and de Kroon, A.I. (2011). Lipid map of the mammalian cell. J. Cell Sci. 124, 5–8.Web of ScienceGoogle Scholar

  • von Andrian, U.H. and Mackay, C.R. (2000). T-cell function and migration. Two sides of the same coin. N. Engl. J. Med 343, 1020–1034.Google Scholar

About the article

Corresponding author: Anja Schwiebs, Pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Building 75, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany, e-mail:

aWe deeply regret the sudden unexpected death of Dr. Helmut Schmidt during the preparation of the manuscript for this article.

Received: 2014-12-01

Accepted: 2015-01-09

Published Online: 2015-01-14

Published in Print: 2015-06-01

Citation Information: Biological Chemistry, Volume 396, Issue 6-7, Pages 795–802, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0287.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Frederic D. Darios, Jernej Jorgacevski, Ajda Flašker, Robert Zorec, Virginia García-Martinez, José Villanueva, Luis M. Gutiérrez, Charlotte Leese, Manjot Bal, Elena Nosyreva, Ege T. Kavalali, and Bazbek Davletov
Scientific Reports, 2017, Volume 7, Number 1
Sylvie Pilote, Chantale Simard, and Benoit Drolet
Fundamental & Clinical Pharmacology, 2017, Volume 31, Number 4, Page 392
Anja Schwiebs, Olga Friesen, Elisabeth Katzy, Nerea Ferreirós, Josef M. Pfeilschifter, and Heinfried H. Radeke
Frontiers in Pharmacology, 2016, Volume 7
Florian Ottenlinger, Anja Schwiebs, Kathrin Pfarr, Annika Wagner, Sophia Grüner, Christoph A. Mayer, Josef M. Pfeilschifter, and Heinfried H. Radeke
European Journal of Immunology, 2016, Volume 46, Number 4, Page 941

Comments (0)

Please log in or register to comment.
Log in