Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 6-7

Issues

The molecular medicine of acid ceramidase

Michael Frohbergh
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xingxuan He
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward H. Schuchman
  • Corresponding author
  • Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-01 | DOI: https://doi.org/10.1515/hsz-2014-0290

Abstract

Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago and is deficient in two rare inherited disorders, Farber lipogranulomatosis (Farber disease) and spinal muscular atrophy with myoclonic epilepsy (SMA-PME). Importantly, AC not only hydrolyzes ceramide into sphingosine within acidic compartments, but also can synthesize ceramide from sphingosine at neutral pH, suggesting that the enzyme may have diverse functions depending on its subcellular location and the local pH. Within cells, AC exists in a complex with other lipid hydrolases and requires a polypeptide cofactor (saposin D) for full hydrolytic activity. Recent studies also have shown that AC is overexpressed in several human cancers, and that inhibition of this enzyme may be a useful cancer drug target. Aberrant AC activity has also been described in several other common diseases. The cDNA and gene (ASAH1) encoding AC have been isolated, several mouse models of AC deficiency have been constructed, and the recombinant enzyme is currently being manufactured for the treatment of Farber disease and SMA-PME. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.

Keywords: ceramide; enzyme replacement therapy; human disease

References

  • Ahmad, A., Mazhar, A.U., and Anwar, M. (2009). Farber disease: a rare neurodegenerative disorder. J. Coll. Physici. 19, 67–68.Google Scholar

  • Alayoubi, A.M., Wang, J.C., Au, B.C., Carpentier, S., Garcia, V., Dworski, S., El-Ghamrasni, S., Kirouac, K.N., Exertier, M.J., Xiong, Z.J., et al. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol. Med. 5, 827–842.Web of ScienceGoogle Scholar

  • Antonarakis, S.E., Valle, D., Moser, H.W., Moser, A., Qualman, S.J., and Zinkham, W.H. (1984). Phenotypic variability in siblings with farber disease. J. Pediatr. 104, 406–409.Google Scholar

  • Azuma, N., Obrien, J.S., Moser, H.W., and Kishimoto, Y. (1994). Stimulation of acid ceramidase activity by saposin-D. Arch. Biochem. Biophys. 311, 354–357.Google Scholar

  • Bar, J., Linke, T., Ferlinz, K., Neumann, U., Schuchman, E.H., and Sandhoff, K. (2001). Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum. Mutat. 17, 199–209.Google Scholar

  • Barnes, R. (2005). Recent developments in cystic fibrosis. J. Fam. Health Care 15, 165–166.Google Scholar

  • Beckmann, N., Sharma, D., Gulbins, E., Becker, K.A., and Edelmann, B. (2014). Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front. Physiol. 5, 331.Web of ScienceGoogle Scholar

  • Bernardo, K., Hurwitz, R., Zenk, T., Desnick, R.J., Ferlinz, K., Schuchman, E.H., and Sandhoff, K. (1995). Purification, characterization, and biosynthesis of human acid ceramidase. J. Biol. Chem. 270, 11098–11102.Google Scholar

  • Bhabak, K.P., Kleuser, B., Huwiler, A., and Arenz, C. (2013). Effective inhibition of acid and neutral ceramidases by novel b-13 and lcl-464 analogues. Bioorg. Med. Chem. 21, 874–882.Web of ScienceGoogle Scholar

  • Boyle, M.P., Bell, S.C., Konstan, M.W., McColley, S.A., Rowe, S.M., Rietschel, E., Huang, X., Waltz, D., Patel, N.R., and Rodman, D. (2014). A cftr corrector (lumacaftor) and a cftr potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a Phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir. Med. 2, 527–538.Google Scholar

  • Canals, D., Perry, D.M., Jenkins, R.W., and Hannun, Y.A. (2011). Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br. J. Pharmacol. 163, 694–712.Web of ScienceGoogle Scholar

  • Chedrawi, A.K., Al-Hassnan, Z.N., Al-Muhaizea, M., Colak, D., Al-Younes, B., Albakheet, A., Tulba, S., and Kaya, N. (2012). Novel V97G asah1 mutation found in Farber disease patients:unique appearance of the disease with an intermediate severity, and marked early involvement of central and peripheral nervous system. Brain Dev. 34, 400–404.Web of ScienceGoogle Scholar

  • Dyment, D.A., Sell, E., Vanstone, M.R., Smith, A.C., Garandeau, D., Garcia, V., Carpentier, S., Le Trionnaire, E., Sabourdy, F., Beaulieu, C.L., et al. (2014). Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin. Genet. 86, 558–563.Web of ScienceGoogle Scholar

  • el Sharkawy, L., Abdallah, H., and Marzouk, S. (2000). [Farber disease: a cause of hoarseness of the voice in children]. Rev. Laryngol. Otol. Rhinol. 121, 261–265 (in French).Google Scholar

  • Eliyahu, E., Shtraizent, N., He, X., Chen, D., Shalgi, R., and Schuchman, E.H. (2011). Identification of cystatin sa as a novel inhibitor of acid ceramidase. J. Biol. Chem. 286, 35624–35633.Web of ScienceGoogle Scholar

  • Eliyahu, E., Shtraizent, N., Martinuzzi, K., Barritt, J., He, X., Wei, H., Chaubal, S., Copperman, A.B., and Schuchman, E.H. (2010). Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 24, 1229–1238.Web of ScienceGoogle Scholar

  • Eliyahu, E., Shtraizent, N., Shalgi, R., and Schuchman, E.H. (2012). Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell. Physiol. Biochem. 30, 735–748.Web of ScienceGoogle Scholar

  • Farber, S., Cohen, J., and Uzman, L.L. (1957). Lipogranulomatosis; a new lipo-glycoprotein storage disease. Mt. Sinai Med, J. 24, 816–837.Google Scholar

  • Ferlinz, K., Kopal, G., Bernardo, K., Linke, T., Bar, J., Breiden, B., Neumann, U., Lang, F., Schuchman, E.H., and Sandhoff, K. (2001). Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J. Biol. Chem. 276, 35352–35360.Google Scholar

  • Gatt, S. (1963). Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem. 238, 3131–3133.Google Scholar

  • Grassme, H., Riethmuller, J., and Gulbins, E. (2013). Ceramide in cystic fibrosis. Handb. Exp. Pharmacol. 216, 265–274.Google Scholar

  • Hara, S., Nakashima, S., Kiyono, T., Sawada, M., Yoshimura, S., Iwama, T., and Sakai, N. (2004). Ceramide triggers caspase activation during γ-radiation-induced apoptosis of human glioma cells lacking functional p53. Oncol. Rep. 12, 119–123.Google Scholar

  • He, X., Okino, N., Dhami, R., Dagan, A., Gatt, S., Schulze, H., Sandhoff, K., and Schuchman, E.H. (2003). Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase. J. Biol. Chem. 278, 32978–32986.Google Scholar

  • Kanto, T., Kalinski, P., Hunter, O.C., Lotze, M.T., and Amoscato, A.A. (2001). Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. 167, 3773–3784.Google Scholar

  • Koch, J., Gartner, S., Li, C.M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996). Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing farber disease. J. Biol. Chem. 271, 33110–33115.Google Scholar

  • Li, C.M., Hong, S.B., Kopal, G., He, X., Linke, T., Hou, W.S., Koch, J., Gatt, S., Sandhoff, K., and Schuchman, E.H. (1998). Cloning and characterization of the full-length cdna and genomic sequences encoding murine acid ceramidase. Genomics 50, 267–274.Google Scholar

  • Li, C.M., Park, J.H., He, X., Levy, B., Chen, F., Arai, K., Adler, D.A., Disteche, C.M., Koch, J., Sandhoff, K., et al. (1999). The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics 62, 223–231.Google Scholar

  • Li, C.M., Park, J.H., Simonaro, C.M., He, X., Gordon, R.E., Friedman, A.H., Ehleiter, D., Paris, F., Manova, K., Hepbildikler, S., et al. (2002). Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79, 218–224.Google Scholar

  • Linke, T., Wilkening, G., Sadeghlar, F., Mozcall, H., Bernardo, K., Schuchman, E., and Sandhoff, K. (2001). Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J. Biol. Chem. 276, 5760–5768.Google Scholar

  • Madeira, C., Santhagunam, A., Salgueiro, J.B., and Cabral, J.M. (2015). Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 33, 35–42.Web of ScienceGoogle Scholar

  • Manfredini, M., Zerinati, F., Gildone, A., and Faccini, R. (2007). Autologous chondrocyte implantation: a comparison between an open periosteal-covered and an arthroscopic matrix-guided technique. Acta Orthop. Belg. 73, 207–218.Google Scholar

  • Masuko, K., Murata, M., Nakamura, H., Yudoh, K., Nishioka, K., and Kato, T. (2006). Sphingosine-1-phosphate induces prostaglandin e2 production from human articular chondrocytes in vitro: Implications of sphingolipids in cartilage degradation. Arthritis Rheum. 54, S575–S576.Google Scholar

  • Okino, N., He, X.X., Gatt, S., Sandhoff, K., Ito, M., and Schuchman, E.H. (2003). The reverse activity of human acid ceramidase. J. Biol. Chem. 278, 29948–29953.Google Scholar

  • Pewzner-Jung, Y., Tavakoli, S. Tabazavareh, Grassme, H., Becker, K.A., Japtok, L., Steinmann, J., Joseph, T., Lang, S., Tuemmler, B., et al. (2014). Sphingoid long chain bases prevent lung infection by pseudomonas aeruginosa. EMBO Mol. Med. 6, 1205–1214.Web of ScienceGoogle Scholar

  • Ramsubir, S., Nonaka, T., Girbes, C.B., Carpentier, S., Levade, T., and Medin, J.A. (2008). In vivo delivery of human acid ceramidase via cord blood transplantation and direct injection of lentivirus as novel treatment approaches for farber disease. Mol. Genet. Metab. 95, 133–141.Web of ScienceGoogle Scholar

  • Samsel, L., Zaidel, G., Drumgoole, H.M., Jelovac, D., Drachenberg, C., Rhee, J.G., Brodie, A.M., Bielawska, A. and Smyth, M.J. (2004). The ceramide analog, b 13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate 58, 382–393.Google Scholar

  • Schnabel, D., Schroder, M., Furst, W., Klein, A., Hurwitz, R., Zenk, T., Weber, J., Harzer, K., Paton, B.C., Poulos, A., et al. (1992). Simultaneous deficiency of sphingolipid activator proteins-1 and proteins-2 is caused by a mutation in the initiation codon of their common gene. J. Biol. Chem. 267, 3312–3315.Google Scholar

  • Selzner, M., Bielawska, A., Morse, M.A., Rudiger, H.A., Sindram, D., Hannun, Y.A., and Clavien, P.A. (2001). Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 61, 1233–1240.Google Scholar

  • Shtraizent, N., Eliyahu, E., Park, J.H., He, X., Shalgi, R., and Schuchman, E.H. (2008). Autoproteolytic cleavage and activation of human acid ceramidase. J. Biol. Chem., 283, 11253–11259.Web of ScienceGoogle Scholar

  • Simonaro, C.M., Sachot, S., Ge, Y., He, X., Deangelis, V.A., Eliyahu, E., Leong, D.J., Sun, H.B., Mason, J.B., Haskins, M.E., et al. (2013). Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. PLoS One 8, e62715.Google Scholar

  • Strelow, A., Bernardo, K., Adam, S.-Klages, Linke, T., Sandhoff, K., Kronke, M., and Adam, D. (2000). Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J. Exp. Med. 192, 601–612.Google Scholar

  • Sugita, M., Moser, H.W., and Dulaney, J.T. (1972). Ceramidase deficiency in Farbers disease (lipogranulomatosis). Science 178, 1100.Google Scholar

  • Sun, X., Olivier, A.K., Liang, B., Yi, Y., Sui, H., Evans, T.I., Zhang, Y., Zhou, W., Tyler, S.R., Fisher, J.T., et al. (2014). Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am. J. Respir. Cell. Mol. Biol. 50, 502–512.Google Scholar

  • Tibboel, J., Reiss, I., de Jongste, J.C., and Post, M. (2014). Sphingolipids in lung growth and repair. Chest 145, 120–128.Web of ScienceGoogle Scholar

  • Torcoletti, M., Petaccia, A., Pinto, R.M., Hladnik, U., Locatelli, F., Agostoni, C., and Corona, F. (2014). Farber disease in infancy resembling juvenile idiopathic arthritis: identification of two new mutations and a good early response to allogeneic haematopoietic stem cell transplantation. Rheumatology 53, 1533–1534.Web of ScienceGoogle Scholar

  • Willis, A., VanHuse, C., Newton, K.P., Wasserstein, M., and Morott, R.A. (2008). Farber’s disease type iv presenting with cholestasis and neonatal liver failure: report of two cases. Pediatr. Dev. Pathol. 11, 305–308.Web of ScienceGoogle Scholar

  • Zhou, J., Tawk, M., Tiziano, F.D., Veillet, J., Bayes, M., Nolent, F., Garcia, V., Servidei, S., Bertini, E., Castro, F. et al. (2012). Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am. J. Hum. Genet. 91, 5–14.Web of ScienceGoogle Scholar

About the article

Corresponding author: Edward H. Schuchman, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA, e-mail:


Received: 2014-12-01

Accepted: 2015-01-07

Published Online: 2015-05-01

Published in Print: 2015-06-01


Citation Information: Biological Chemistry, Volume 396, Issue 6-7, Pages 759–765, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0290.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yadira F. Ordóñez, José Luís Abad, Mazen Aseeri, Josefina Casas, Virginie Garcia, Mireia Casasampere, Edward H. Schuchman, Thierry Levade, Antonio Delgado, Gemma Triola, and Gemma Fabrias
Journal of the American Chemical Society, 2019, Volume 141, Number 19, Page 7736
[2]
Marta Moskot, Katarzyna Bocheńska, Joanna Jakóbkiewicz-Banecka, Bogdan Banecki, and Magdalena Gabig-Cimińska
International Journal of Molecular Sciences, 2018, Volume 19, Number 1, Page 247
[3]
Calogera M. Simonaro
Journal of Inborn Errors of Metabolism and Screening, 2016, Volume 4, Page 232640981665046
[4]
Yusuf A. Hannun and Lina M. Obeid
Nature Reviews Molecular Cell Biology, 2017
[5]
Edibe Pembegül Yildiz, Gözde Yesil, Gonca Bektas, Mine Caliskan, Burak Tatlı, Nur Aydinli, and Meral Ozmen
Clinical Neurology and Neurosurgery, 2018, Volume 164, Page 47
[6]
Claudia Cozma, Marius-Ionuț Iurașcu, Sabrina Eichler, Marina Hovakimyan, Oliver Brandau, Susanne Zielke, Tobias Böttcher, Anne-Katrin Giese, Jan Lukas, and Arndt Rolfs
Scientific Reports, 2017, Volume 7, Number 1
[7]
Su-Fern Tan, Jennifer M. Pearson, David J. Feith, and Thomas P. Loughran
Expert Opinion on Therapeutic Targets, 2017, Volume 21, Number 6, Page 583
[8]
Edward H. Schuchman
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2016, Volume 1862, Number 9, Page 1459

Comments (0)

Please log in or register to comment.
Log in