Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 9-10

Issues

A universal mechanism for transport and regulation of CPA sodium proton exchangers

Octavian Călinescu
  • Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt/Main, Germany
  • Department of Biophysics, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, RO-050474 Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus Fendler
  • Corresponding author
  • Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt/Main, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-28 | DOI: https://doi.org/10.1515/hsz-2014-0278

Abstract

Recent studies performed on a series of Na+/H+ exchangers have led us to postulate a general mechanism for Na+/H+ exchange in the monovalent cation/proton antiporter superfamily. This simple mechanism employs a single binding site for which both substrates compete. The developed kinetic model is self-regulatory, ensuring down-regulation of transport activity at extreme pH, and elegantly explains the pH-dependent activity of Na+/H+ exchangers. The mechanism was experimentally verified and shown to describe both electrogenic and electroneutral exchangers. Using a small number of parameters, exchanger activity can be modeled under different conditions, providing insights into the physiological role of Na+/H+ exchangers.

Keywords: cation/proton antiporter superfamily; Na+/H+ exchangers; NhaA; NhaP1; pH regulation; transport mechanism

References

  • Aronson, P.S., Nee, J., and Suhm, M.A. (1982). Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299, 161–163.Google Scholar

  • Bobulescu, I.A., Di Sole, F., and Moe, O.W. (2005). Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr. Opin. Nephrol. Hypertens. 14, 485–494.Google Scholar

  • Brett, C.L., Donowitz, M., and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol. 288, C223–C239.Google Scholar

  • Calinescu, O., Danner, E., Bohm, M., Hunte, C., and Fendler, K. (2014a). Species differences in bacterial NhaA Na+/H+ exchangers. FEBS Lett. 588, 3111–3116.Web of ScienceGoogle Scholar

  • Calinescu, O., Paulino, C., Kuhlbrandt, W., and Fendler, K. (2014b). Keeping it simple, transport mechanism and pH regulation in Na+/H+ exchangers. J. Biol. Chem. 289, 13168–13176.Web of ScienceGoogle Scholar

  • Donowitz, M., Ming Tse, C., and Fuster, D. (2013). SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol. Aspects Med. 34, 236–251.Google Scholar

  • Goswami, P., Paulino, C., Hizlan, D., Vonck, J., Yildiz, O., and Kuhlbrandt, W. (2011). Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J. 30, 439–449.Google Scholar

  • Hunte, C., Screpanti, E., Venturi, M., Rimon, A., Padan, E., and Michel, H. (2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202.Google Scholar

  • Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature 211, 969–970.Google Scholar

  • Kinsella, J.L. and Aronson, P.S. (1982). Determination of the coupling ratio for Na+ -H+ exchange in renal microvillus membrane vesicles. Biochim. Biophys. Acta 689, 161–164.Google Scholar

  • Klingenberg, M. (1985a). Catalytic energy and carrier-catalyzed solute transport in biomembranes. In: Achievements and Perspectives of Mitochondrial Research, Vol. I, Bioenergetics, E. Quagliariello, E.C. Slater, F. Palmieri, C. Saccone, and A.M. Kroon, eds. (Amsterdam, New York, Oxford: Elsevier Science Publisher).Google Scholar

  • Klingenberg, M. (1985b). Principles of carrier catalysis elucidated by comparing two similar membrane translocators from mitochondria, the ADP/ATP carrier and the uncoupling protein. Ann. N.Y. Acad. Sci. 456, 279–288.Google Scholar

  • Klingenberg, M. (1992). Mechanistic and energetic aspects of carrier catalysis-exemplified with mitochondrial translocators. In: A Study of Enzymes, S.A. Kuby, ed. (Boca Raton, Ann Arbor, Boston: CRC Press).Google Scholar

  • Krulwich, T.A., Sachs, G., and Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343.Web of ScienceGoogle Scholar

  • Landau, M., Herz, K., Padan, E., and Ben-Tal, N. (2007). Model structure of the Na+/H+ exchanger 1 (NHE1): functional and clinical implications. J. Biol. Chem. 282, 37854–37863.Web of ScienceGoogle Scholar

  • Leblanc, G., Bassilana, M., and Damiano-Forano, E. (1988). Na+/H+ exchange in bacteria and organelles. In: Na+/H+ Exchange, S. Grinstein and D. Piwnica-Worms, eds. (Boca Raton, Florida: CRC Press).Google Scholar

  • Lee, C., Kang, H.J., Von Ballmoos, C., Newstead, S., Uzdavinys, P., Dotson, D.L., Iwata, S., Beckstein, O., Cameron, A.D., and Drew, D. (2013). A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577.Google Scholar

  • Lee, C., Yashiro, S., Dotson, D.L., Uzdavinys, P., Iwata, S., Sansom, M.S., Von Ballmoos, C., Beckstein, O., Drew, D., and Cameron, A.D. (2014). Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J. Gen. Physiol. 144, 529–544.Google Scholar

  • Lentes, C.J., Mir, S.H., Boehm, M., Ganea, C., Fendler, K., and Hunte, C. (2014). Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella typhimurium. PLoS One 9, e101575.Google Scholar

  • Mager, T., Rimon, A., Padan, E., and Fendler, K. (2011). Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J. Biol. Chem. 286, 23570–23581.Google Scholar

  • Ohgaki, R., Van, I.S.C., Matsushita, M., Hoekstra, D., and Kanazawa, H. (2011). Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50, 443–450.Web of ScienceGoogle Scholar

  • Padan, E., Bibi, E., Ito, M., and Krulwich, T.A. (2005). Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717, 67–88.Google Scholar

  • Padan, E., Kozachkov, L., Herz, K., and Rimon, A. (2009). NhaA crystal structure: functional-structural insights. J. Exp. Biol. 212, 1593–1603.Web of ScienceGoogle Scholar

  • Paulino, C. and Kuhlbrandt, W. (2014). pH- and sodium-induced changes in a sodium/proton antiporter. eLife 3, e01412.Google Scholar

  • Paulino, C., Wohlert, D., Kapotova, E., Yildiz, O., and Kuhlbrandt, W. (2014). Structure and transport mechanism of the sodium/ proton antiporter MjNhaP1. eLife 3, e03583.Google Scholar

  • Stein, W.D. and Honig, B. (1977). Models for active-transport of cations-steady-state analysis. Mol. Cell. Biochem. 15, 27–44.Google Scholar

  • Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., and Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591.Web of ScienceGoogle Scholar

  • Wohlert, D., Yildiz, O., and Kuhlbrandt, W. (2014). Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife 3, e03579.Google Scholar

About the article

Corresponding author: Klaus Fendler, Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt/Main, Germany, e-mail:


Received: 2014-11-28

Accepted: 2015-01-26

Published Online: 2015-01-28

Published in Print: 2015-09-01


Citation Information: Biological Chemistry, Volume 396, Issue 9-10, Pages 1091–1096, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0278.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ryan K Henderson, Klaus Fendler, and Bert Poolman
Current Opinion in Biotechnology, 2019, Volume 58, Page 62
[2]
Gerardo Orta, José Luis de la Vega-Beltran, David Martín-Hidalgo, Celia M. Santi, Pablo E. Visconti, and Alberto Darszon
Journal of Biological Chemistry, 2018, Volume 293, Number 43, Page 16830
[3]
Ming Chang Hu, I. Alexandru Bobulescu, Henry Quiñones, Serge M. Gisler, and Orson W. Moe
American Journal of Physiology-Renal Physiology, 2017, Volume 313, Number 4, Page F1018
[4]
Kalyan C. Kondapalli, R. Todd Alexander, Jennifer L Pluznick, and Rajini Rao
Journal of Physiology and Biochemistry, 2017, Volume 73, Number 2, Page 199
[5]
Raphael Alhadeff and Arieh Warshel
The Journal of Physical Chemistry B, 2016, Volume 120, Number 42, Page 10951

Comments (0)

Please log in or register to comment.
Log in