Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 396, Issue 9-10

Issues

Functional properties of LptA and LptD in Anabaena sp. PCC 7120

Yi-Ching Hsueh
  • Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva-M. Brouwer
  • Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julian Marzi
  • Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Mirus
  • Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrico Schleiff
  • Corresponding author
  • Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
  • Cluster of Excellence Frankfurt, Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 9, D-60438 Frankfurt/Main, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-10 | DOI: https://doi.org/10.1515/hsz-2014-0322

Abstract

Lipopolysaccharides (LPS) are central components of the outer membrane and consist of Lipid A, the core polysaccharide, and the O-antigen. The synthesis of LPS is initiated at the cytosolic face of the cytoplasmic membrane. The subsequent transport to and across the outer membrane involves multiple lipopolysaccharide transport (Lpt) proteins. Among those proteins, the periplasmic-localized LptA and the outer membrane-embedded LptD participate in the last steps of transfer and insertion of LPS into the outer membrane. While the process is described for proteobacterial model systems, not much is known about the machinery in cyanobacteria. We demonstrate that anaLptD (alr1278) of Anabaena sp. PCC 7120 is important for cell wall function and its pore domain shows a Lipid A sensitive cation-selective gating behavior. The N-terminal domain of anaLptD recognizes anaLptA (alr4067), but not ecLptA. Furthermore, anaLptA specifically interacts with the Lipid A from Anabaena sp. PCC 7120 only, while anaLptD binds to Lipid A isolated from Escherichia coli as well. Based on the comparative analysis of proteins from E. coli and Anabaena sp. we discuss the properties of the cyanobacterial Lpt system.

Keywords: cyanobacteria; cell wall biogenesis; lipid A transport system; LptA; LptD

References

  • Aono, R., Negishi, T., and Nakajima, H. (1994). Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl. Environ. Microbiol. 60, 4624–4626.Google Scholar

  • Apicella, M.A., Griffiss, J.M., and Schneider, H. (1994). Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol. 235, 242–252.Google Scholar

  • Bos, M.P., Tefsen, B., Geurtsen, J., and Tommassen, J. (2004). Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl. Acad. Sci. USA 101, 9417–9422.Google Scholar

  • Bos, M.P., and Tommassen, J. (2011). The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis. J. Biol. Chem. 286, 28688–28696.Google Scholar

  • Bowyer, A., Baardsnes, J., Ajamian, E., Zhang, L., and Cygler, M. (2011). Characterization of interactions between LPS transport proteins of the Lpt system. Biochem. Biophys. Res. Commun. 404, 1093–1098.Google Scholar

  • Braun, M., and Silhavy, T.J. (2002). Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45, 1289–1302.Google Scholar

  • Chen, J., Tao, G., and Wang, X. (2011). Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnol. Lett. 33, 1013–1019.Google Scholar

  • Chng, S.S., Ruiz, N., Chimalakonda, G., Silhavy, T.J., and Kahne, D. (2010). Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc. Natl. Acad. Sci. USA 107, 5363–5368.Google Scholar

  • Chng, S.S., Xue, M., Garner, R.A., Kadokura, H., Boyd, D., Beckwith, J., and Kahne, D. (2012). Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337, 1665–1668.Google Scholar

  • Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N.G., Stansfeld, P.J., He, C., Zhang, Y., Wang, W., and Dong, C. (2014). Structural basis for outer membrane lipopolysaccharide insertion. Nature 511, 52–56.Google Scholar

  • Eddy, S.R. (2011). Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195.Google Scholar

  • Engelhardt, H. (2007). Are S-layers exoskeletons? The basic function of surface protein layers revisited. J. Struct. Biol. 160, 115–124.Google Scholar

  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., et al. (2014). Pfam: the protein families database. Nuc. Acids Res. 42, 222–230.Google Scholar

  • Freinkman, E., Chng, S.S., and Kahne, D. (2011). The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc. Natl. Acad. Sci. USA 108, 2486–2491.Google Scholar

  • Freinkman, E., Okuda, S., Ruiz, N., and Kahne, D. (2012). Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochem. 51, 4800–4806.Google Scholar

  • Grabowicz, M., Yeh, J., and Silhavy, T.J. (2013). Dominant negative lptE mutation that supports a role for LptE as a plug in the LptD barrel. J. Bacteriol. 195, 1327–1334.Google Scholar

  • Greenfield, N., and Fasman, G.D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116.Google Scholar

  • Haarmann, R., Ibrahim, M., Stevanovic, M., Bredemeier, R., and Schleiff, E. (2010). The properties of the outer membrane localized Lipid A transporter LptD. J. Phys. Condens. Matter 22, 454124.Google Scholar

  • Hahn A, and Schleiff E. (2014). The cell envelope. In: The cell biology of cyanobacteria, Flores, E., and Herrero, A. (eds) (Norfolk: Caister Academic Press), pp. 29–88.Google Scholar

  • Hille, B. (2001). Ion Channels of Excitable Membranes. 3rd ed. (Sunderland, Massachusetts, USA Sinauer Associates, Inc).Google Scholar

  • Hinnah, S.C., Wagner, R., Sveshnikova, N., Harrer, R., and Soll, J. (2002). The chloroplast protein import channel Toc75: Pore properties and interaction with transit peptides. Biophys. J. 83, 899–911.Google Scholar

  • Hug, I., Couturier, M.R., Rooker, M.M., Taylor, D.E., Stein, M., and Feldman, M.F. (2010). Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog. 6, e1000819.CrossrefGoogle Scholar

  • Jacob-Dubuisson, F., Villeret, V., Clantin, B., Delattre, A.S., and Saint, N. (2009). First structural insights into the TpsB/Omp85 superfamily. Biol. Chem. 390, 675–684.Google Scholar

  • Katoh, K., Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.Google Scholar

  • Krieger, E., Vriend, G. (2014). YASARA View-molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30, 2981–2982.Google Scholar

  • Kyte, J., Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.Google Scholar

  • Li, W., Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.Google Scholar

  • Merten, J.A., Schultz, K.M., and Klug, C.S. (2012). Concentration-dependent oligomerization and oligomeric arrangement of LptA. Protein Sci. 21, 211– 218.Google Scholar

  • Moslavac, S., Bredemeier, R., Mirus, O., Granvogl, B., Eichacker, L.A., and Schleiff, E. (2005). Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome Res. 4, 1330–1338.Google Scholar

  • Moslavac, S., Reisinger, V., Berg, M., Mirus, O., Vosyka, O., Plöscher, M., Flores, E., Eichacker, L.A., and Schleiff, E. (2007a). The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol. Chem. 388, 823–829.Google Scholar

  • Moslavac, S., Nicolaisen, K., Mirus, O., Al Dehni, F., Pernil, R., Flores, E, Maldener, I., and Schleiff, E. (2007b). A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 7887–7895.Google Scholar

  • Nicolaisen, K., Moslavac, S., Samborski, A., Valdebenito, M., Hantke, K., Maldener, I., Muro-Pastor, A.M., Flores, E., and Schleiff, E. (2008). Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J. Bacteriol. 190, 7500–7507.Google Scholar

  • Nicolaisen, K., Mariscal, V., Bredemeier, R., Pernil, R., Moslavac, S., López-Igual, R., Maldener, I., Herrero, A., Schleiff, E., and Flores, E. (2009). The outer membrane of a heterocyst-forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Mol. Microbiol. 74, 58–70.Google Scholar

  • Okuda, S., Freinkman, E., and Kahne, D. (2012). Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338, 1214 –1217.Google Scholar

  • Oreb, M., Höfle, A., Koenig, P., Sommer, M.S., Sinning, I., Wang, F., Tews, I., Schnell, D.J., and Schleiff, E. (2011). Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33. Biochem. J. 436, 313–319.Google Scholar

  • Qiao, S., Luo, Q., Zhao, Y., Zhang, X.C., and Huang, Y. (2014). Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511, 108–111.Google Scholar

  • Raetz, C.R., and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700.Google Scholar

  • Rippka, R., Dereules, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y. (1979). Generic assignments, strain stories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.Google Scholar

  • Ruiz, N., Kahne, D., and Silhavy, T.J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol. 4, 57–66.Google Scholar

  • Ruiz, N., Kahne, D., and Silhavy, T.J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. Microbiol. 7, 677–683.Google Scholar

  • Sampson, B.A., Misra, R., and Benson, S.A. (1989). Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501.Google Scholar

  • Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B.D. (2002). Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 1934–1946.Google Scholar

  • Sestito, S.E., Sperandeo, P., Santambrogio, C., Ciaramelli, C., Calabrese, V., Rovati, G.E., Zambelloni, L., Grandori, R., Polissi, A., and Peri, F. (2014). Functional characterization of E. coli LptC: interaction with LPS and a synthetic ligand. ChemBioChem 15, 734–742.Google Scholar

  • Sonnhammer, E.L., von Heijne, G., Krogh A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182.Google Scholar

  • Sperandeo, P., Cescutti, R., Villa, R., Di Benedetto, C., Candia, D., Dehò, G., and Polissi, A. (2007). Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189, 244 –253.Google Scholar

  • Sperandeo, P., Lau, F.K., Carpentieri, A., de Castro, C., Molinaro, A., Dehò, G., Silhavy, T.J., and Polissi, A. (2008). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 190, 4460–4469.Google Scholar

  • Sperandeo, P., Villa, R., Martorana, A.M., Samalikova, M., Grandori, R., Dehò, G., and Polissi, A. (2011). New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J. Bacteriol. 193,1042–1053.Google Scholar

  • Suits, M.D., Sperandeo, P., Dehò, G., Polissi, A., and Jia, Z. (2008). Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J. Mol. Biol. 380, 476–488.Google Scholar

  • Tran, A.X., Trent, M.S., and Whitfield, C. (2008). The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J. Biol. Chem. 283, 20342–20349.Google Scholar

  • Tran, A.X., Dong, C., and Whitfield, C. (2010). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J. Biol. Chem. 285, 33529 –33539.Google Scholar

  • Tripp, J., Hahn, A., Koenig, P., Flinner, N., Bublak, D., Brouwer, E.M., Ertel, F., Mirus, O., Sinning, I., Tews, I., and Schleiff, E. (2012). Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J. Biol. Chem. 287, 24164–24173.Google Scholar

  • Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J., and Kahne, D. (2006). Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 103, 11754–11759.Google Scholar

About the article

Corresponding author: Enrico Schleiff, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von- Laue-Str. 9, D-60438 Frankfurt/Main, Germany; Cluster of Excellence Frankfurt, Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 9, D-60438 Frankfurt/Main, Germany, e-mail:


Received: 2014-12-28

Accepted: 2015-03-01

Published Online: 2015-03-10

Published in Print: 2015-09-01


Citation Information: Biological Chemistry, Volume 396, Issue 9-10, Pages 1151–1162, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2014-0322.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yi-Ching Hsueh, Christian Ehmann, Nadine Flinner, Roman Ladig, and Enrico Schleiff
Plant, Cell & Environment, 2017, Volume 40, Number 8, Page 1643

Comments (0)

Please log in or register to comment.
Log in