Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 396, Issue 9-10


Extending native mass spectrometry approaches to integral membrane proteins

Albert Konijnenberg
  • Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeroen F. van Dyck
  • Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lyn L. Kailing
  • Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Sobott
  • Corresponding author
  • Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
  • UA-VITO Centre for Proteomics, University of Antwerp, Antwerp, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-14 | DOI: https://doi.org/10.1515/hsz-2015-0136


Recent developments in native mass spectrometry and ion mobility have made it possible to analyze the composition and structure of membrane protein complexes in the gas-phase. In this short review we discuss the experimental strategies that allow to elucidate aspects of the dynamic structure of these important drug targets, such as the structural effects of lipid binding or detection of co-populated conformational and assembly states during gating on an ion channel. As native mass spectrometry relies on nano-electrospray of natively reconstituted proteins, a number of commonly used lipid- and detergent-based reconstitution systems have been evaluated for their compatibility with this approach, and parameters for the release of intact, native-like folded membrane proteins studied in the gas-phase. The strategy thus developed can be employed for the investigation of the subunit composition and stoichiometry, oligomeric state, conformational changes, and lipid and drug binding of integral membrane proteins.

Keywords: detergent micelles; lipid binding; membrane proteins; native mass spectrometry; structural biology


  • Annesley, T.M. (2003). Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044.Google Scholar

  • Bagal, D., Kitova, E.N., Liu, L., El-Hawiet, A., Schnier, P.D., and Klassen, J.S. (2009). Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal. Chem. 81, 7801–7806.Google Scholar

  • Barrera, N.P., Di Bartolo, N., Booth, P.J., and Robinson, C.V. (2008). Micelles protect membrane complexes from solution to vacuum. Science 321, 243–246.Google Scholar

  • Barrera, N.P., Isaacson, S.C., Zhou, M., Bavro, V.N., Welch A., Schaedler, T.A., Seeger, M.A., Miguel, R.N., Korkhov, V.M., van Veen, H.W., et al. (2009). Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat. Methods 6, 585–587.CrossrefGoogle Scholar

  • Barrera, N.P., Zhou, M., and Robinson, C.V. (2013). The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8.CrossrefGoogle Scholar

  • Bayburt, T.H. and Sligar, S.G. (2010). Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721–1727.Google Scholar

  • Benesch, J.L., Ruotolo, B.T., Sobott, F., Wildgoose, J., Gilbert, A., Bateman, R., and Robinson, C.V. (2009). Quadrupole-time-of-flight mass spectrometer modified for higher-energy dissociation reduces protein assemblies to peptide fragments. Anal. Chem. 81, 1270–1274.Google Scholar

  • Bleiholder, C., Wyttenbach, T., and Bowers, M.T. (2011). A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. Int. J. Mass Spectrom. 308, 1–10.Google Scholar

  • Bleiholder, C., Contreras, S., and Bowers, M.T. (2013). A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (IV). Application to polypeptides. Int. J. Mass Spectrom. 354–355, 275–280.Google Scholar

  • Borysik, A.J. and Robinson, C.V. (2012a). Formation and dissociation processes of gas-phase detergent micelles. Langmuir 28, 7160–7167.Google Scholar

  • Borysik, A.J. and Robinson, C.V. (2012b). The ‘sticky business’ of cleaning gas-phase membrane proteins: a detergent oriented perspective. Phys. Chem. Chem. Phys. 14, 14439–14449.CrossrefGoogle Scholar

  • Borysik, A.J., Hewitt, D.J., and Robinson, C.V. (2013). Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J. Am. Chem. Soc. 135, 6078–6083.Google Scholar

  • Calabrese, A.N., Watkinson, T.G., Henderson, P.J., Radford, S.E., and Ashcroft, A.E. (2015). Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal. Chem. 87, 1118–1126.Google Scholar

  • Chernushevich, I.V. and Thomson, B.A. (2004). Collisional cooling of large ions in electrospray mass spectrometry. Anal. Chem. 76, 1754–1760.Google Scholar

  • Della Pia, E.A., Hansen, R.W., Zoonens, M., and Martinez, K.L. (2014). Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. J. Membr. Biol. 247, 815–826.Google Scholar

  • Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.Google Scholar

  • Grandori, R. (2003). Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J. Mass Spectrom. 38, 11–15.CrossrefGoogle Scholar

  • Hall, Z., Politis, A., and Robinson, C.V. (2012). Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20, 1596–1609.Google Scholar

  • Hall, Z. and Robinson, C.V. (2012). Do charge state signatures guarantee protein conformations? J. Am. Soc. Mass Spectrom. 23, 1161–1168.Google Scholar

  • Hopper, J.T., Yu, Y.T., Li, D., Raymond, A., Bostock, M., Liko, I., Mikhailov, V., Laganowsky, A., Benesch, L.P., Caffrey M., et al. (2013). Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods 10, 1206–1208.CrossrefGoogle Scholar

  • Ilag, L.L., Ubarretxena-Belandia, I., Tate, C.G., and Robinson, C.V. (2004). Drug binding revealed by tandem mass spectrometry of a protein-micelle complex. J. Am. Chem. Soc. 126, 14362–14363.Google Scholar

  • Jarrold, M.F. (2007). Helices and Sheets in vacuo. Phys. Chem. Chem. Phys. 9, 1659–1671.CrossrefGoogle Scholar

  • Jurneczko, E. and Barran, P.E. (2011). How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136, 20–28.Google Scholar

  • Konijnenberg, A., Butterer, A., and Sobott, F. (2013). Native ion mobility-mass spectrometry and related methods in structural biology. BBA-Proteins Proteom. 1834, 1239–1256.Google Scholar

  • Konijnenberg, A., Yilmaz, D., Ingólfsson, H.I., Dimitrova, A., Marrink, S.J., Li, Z., Vénien-Bryan, C., Sobott, F., and Koçer, A. (2014). Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc. Natl. Acad. Sci. USA. 111, 17170–17175.Google Scholar

  • Konijnenberg, A., Bannwarth, L., Yilmaz, D., Koçer, A., Venien-Bryan, C., and Sobott, F (2015). Top-down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci. 24, 1292–1300.CrossrefGoogle Scholar

  • Laganowsky, A., Reading, E., Hopper, J.T., and Robinson, C.V. (2013). Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651.CrossrefGoogle Scholar

  • Laganowsky, A., Reading, E., Allison, T.M., Ulmschneider, M.B., Degiacomi, M.T., Baldwin, A.J., and Robinson, C.V. (2014). Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175.Google Scholar

  • Lanucara, F., Holman, S.W., Gray, C.J., and Eyers, C.E. (2014). The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294.CrossrefGoogle Scholar

  • Lee, A.G. (2004). How lipids affect the activities of integral membrane proteins. BBA-Biomembr. 1666, 62–87.Google Scholar

  • Leney, A.C., McMorran, L.M., Radford, S.E., and Ashcroft, A.E. (2012). Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84, 9841–9847.Google Scholar

  • Loo, J.A. (1997). Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23.Google Scholar

  • Lössl, P., Snijder, J., and Heck, A.J. (2014). Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917.Google Scholar

  • Marty, M.T., Zhang, H., Cui, W., Blankenship, R.E., Gross, M.L., and Sligar, S.G. (2012). Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal. Chem. 84, 8957–8960.Google Scholar

  • McKay, A.R., Ruotolo, B.T., Ilag, L.L., and Robinson, C.V. (2006). Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J. Am. Chem. Soc. 128, 11433–11442.Google Scholar

  • Mehmood, S., Marcoux, J., Hopper, J.T., Allison, T.M., Liko, I., Borysik, A.J., and Robinson, C.V. (2014). Charge reduction stabilizes intact membrane protein complexes for mass spectrometry. J. Am. Chem. Soc. 136, 17010–17012.Google Scholar

  • Patriksson, A., Marklund, E., and Van Der Spoel, D (2007). Protein structures under electrospray conditions. Biochemistry 46, 933–945.Google Scholar

  • Politis, A., Park, A.Y., Hall, Z., Ruotolo, B.T., and Robinson, C.V. (2013). Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. J. Mol. Biol. 425, 4790–4801.Google Scholar

  • Politis, A., Stengel, F., Hall, Z., Hernández, H., Leitner, A., Walzthoeni, T., Robinson, C.V., and Aebersold, R. (2014). A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat. Methods 11, 403–406.CrossrefGoogle Scholar

  • Przybylski, M. and Glocker, M.O. (1996). Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions – New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew Chemie Int. Ed. English 35, 806–826.Google Scholar

  • Rodríguez, G., Soria, G., Coll, E., Rubio, L., Barbosa-Barros, L., López-lglesias, C., Planas, A.M., Estelrich, J., De La Maza, A., and López, O. (2010). Bicosomes: Bicelles in dilute systems. Biophys. J. 99, 480–488.Google Scholar

  • Sanders, C.R. and Prosser, R.S. (1998). Bicelles: a model membrane system for all seasons? Structure 6, 1227–1234.CrossrefGoogle Scholar

  • Shvartsburg, A.A. and Jarrold, M.F. (1996). An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91.Google Scholar

  • Shvartsburg, A.A., Mashkevich, S V., Baker, E.S., and Smith, R.D. (2007). Optimization of algorithms for ion mobility calculations. J. Phys. Chem. A 111, 2002–2010.Google Scholar

  • Sobott, F., McCammon, M.G., Hernández, H., and Robinson, C.V. (2005). The flight of macromolecular complexes in a mass spectrometer. Philos. Trans. A Math Phys. Eng. Sci. 363, 379–389; discussion 389–391.Google Scholar

  • Steinberg, M.Z., Breuker, K., Elber, R., and Gerber, R.B. (2007). The dynamics of water evaporation from partially solvated cytochrome c in the gas phase. Phys. Chem. Chem. Phys. 9, 4690–4697.CrossrefGoogle Scholar

  • Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., and Heck, A.J.R. (2010). Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655.CrossrefGoogle Scholar

  • van den Heuvel, R. H., van Duijn, E., Mazon, H., Synowsky, S.A., Lorenzen, K., Versluis, C., Brouns, S.J.J., Langridge, D., van der Oost, J., Hoyes, J., et al. (2006). Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483.Google Scholar

  • Whitelegge, J.P. (2013). Integral membrane proteins and bilayer proteomics. Anal. Chem. 85, 2558–2568.Google Scholar

  • Wilm, M. and Mann, M. (1996). Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8.Google Scholar

  • Zhou, M., Politis, A., Davies, R.B., Liko, I., Wu, K.-J., Stewart, A.G., Stock, D., and Robinson, C.V. (2014). Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat. Chem. 6, 208–215.CrossrefGoogle Scholar

  • Zoonens, M. and Popot, J.L. (2014). Amphipols for Each Season. J. Membr. Biol. 247, 759–796.Google Scholar

About the article

Corresponding author: Frank Sobott, Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Antwerp, Belgium; and UA-VITO Centre for Proteomics, University of Antwerp, Antwerp, Belgium, e-mail:

Received: 2015-03-01

Accepted: 2015-07-06

Published Online: 2015-07-14

Published in Print: 2015-09-01

Citation Information: Biological Chemistry, Volume 396, Issue 9-10, Pages 991–1002, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0136.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lucy Kate Ladefoged, Talia Zeppelin, and Birgit Schiøtt
Neuroscience Letters, 2018
Johannes Heidemann, Boris Krichel, and Charlotte Uetrecht
BIOspektrum, 2018, Volume 24, Number 2, Page 164
Yanting Zhou, Jing Gao, Hongwen Zhu, Jingjing Xu, Han He, Lei Gu, Hui Wang, Jie Chen, Danjun Ma, Hu Zhou, and Jing Zheng
Analytical Chemistry, 2018
Joana Costeira-Paulo, Joseph Gault, Gergana Popova, Marcus J.G.W. Ladds, Ingeborg M.M. van Leeuwen, Médoune Sarr, Anders Olsson, David P. Lane, Sonia Laín, Erik G. Marklund, and Michael Landreh
Cell Chemical Biology, 2018
Albert Barroso, Estela Giménez, Albert Konijnenberg, Jaime Sancho, Victoria Sanz-Nebot, and Frank Sobott
Journal of Proteomics, 2018, Volume 173, Page 22
Zhenjun Liu, Wansong Chen, Yajin Han, Jiang Ouyang, Min Chen, Shengqiang Hu, Liu Deng, and You-Nian Liu
Talanta, 2017, Volume 175, Page 470
Lindsay J. Morrison, Wenrui Chai, Jake A. Rosenberg, Graeme Henkelman, and Jennifer S Brodbelt
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 30, Page 20057
Kallol Gupta, Joseph A. C. Donlan, Jonathan T. S. Hopper, Povilas Uzdavinys, Michael Landreh, Weston B. Struwe, David Drew, Andrew J. Baldwin, Phillip J. Stansfeld, and Carol V. Robinson
Nature, 2017, Volume 541, Number 7637, Page 421
Xiaoyun Gong, Xingchuang Xiong, Lin Qi, and Xiang Fang
Talanta, 2017, Volume 164, Page 418
Lindsay J. Morrison and Jennifer S. Brodbelt
Journal of the American Chemical Society, 2016, Volume 138, Number 34, Page 10849

Comments (0)

Please log in or register to comment.
Log in