Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 396, Issue 9-10


The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump

Reinke Tobias Müller / Klaas Martinus Pos
Published Online: 2015-06-09 | DOI: https://doi.org/10.1515/hsz-2015-0150


In Gram-negative bacteria, tripartite efflux pumps, like AcrAB-TolC from Escherichia coli, play a prominent role in the resistance against multiple antibiotics. Transport of the drugs across the outer membrane and its coupling to the electrochemical gradient is dependent on the presence of all three components. As the activity of the E. coli AcrAB-TolC efflux pump is dependent on both the concentration of substrates and the extent of the electrochemical gradient across the inner membrane, the dynamics of tripartite pump assembly and disassembly might be crucial for effective net transport of drugs towards the outside of the cell.

Keywords: antibiotic resistance; proton-motive force; transport; tripartite efflux pumps


  • Boyer, P.D. (1997). The ATP synthase – a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749.Google Scholar

  • Cha, H. and Pos, K.M. (2014). Membrane Transport Mechanism (Berlin, Heidelberg: Springer Berlin Heidelberg).Google Scholar

  • Cha, H.J., Müller, R.T., and Pos, K.M. (2014). Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter. Antimicrob. Agents Chemother. 58, 4767–4772.Google Scholar

  • Cherepanov, D.A., Feniouk, B.A., Junge, W., and Mulkidjanian, A.Y. (2003). Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys. J. 85, 1307–1316.Google Scholar

  • Cherepanov, D.A., Junge, W., and Mulkidjanian, A.Y. (2004). Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86, 665–680.Google Scholar

  • Du, D., Wang, Z., James, N.R., Voss, J.E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., and Luisi, B.F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512–515.Web of ScienceGoogle Scholar

  • Du, D., van Veen, H.W., and Luisi, B.F. (2015a). Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol. 23, 311–319.Web of ScienceGoogle Scholar

  • Du, D., Voss, J., Wang, Z., Chiu, W., and Luisi, B.F. (2015b). The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump. Biol. Chem. 396, 1073–1082.Web of ScienceGoogle Scholar

  • Eicher, T., Cha, H.J., Seeger, M.A., Brandstätter, L., El-Delik, J., Bohnert, J.A, Kern, W.V, Verrey, F., Grütter, M.G., Diederichs, K., et al. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl. Acad. Sci. USA 109, 5687–5692.Web of ScienceGoogle Scholar

  • Eicher, T., Seeger, M.A., Anselmi, C., Zhou, W., Brandstätter, L., Verrey, F., Diederichs, K., Faraldo-Gómez, J.D., and Pos, K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3, e03145.Web of ScienceGoogle Scholar

  • Fischer, N. and Kandt, C. (2011). Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB. Proteins 79, 2871–2885.Web of ScienceGoogle Scholar

  • Hung, L.-W., Kim, H.-B., Murakami, S., Gupta, G., Kim, C.-Y., and Terwilliger, T.C. (2013). Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J. Struct. Funct. Genomics 14, 71–75.Google Scholar

  • Janganan, T.K., Bavro, V.N., Zhang, L., Borges-Walmsley, M.I., and Walmsley, A.R. (2013). Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Mol. Microbiol. 88, 590–602.Web of ScienceGoogle Scholar

  • Kashket, E.R. (1985). The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol. 39, 219–242.Google Scholar

  • Kinana, A.D., Vargiu, A.V, and Nikaido, H. (2013). Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 52, 8342–8351.Google Scholar

  • Kralj, J.M., Hochbaum, D.R., Douglass, A.D., and Cohen, A.E. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333, 345–348.Google Scholar

  • Lim, S.P. and Nikaido, H. (2010). Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob. Agents Chemother. 54, 1800–1806.Google Scholar

  • Murakami, S., Nakashima, R., Yamashita, E., and Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593.Google Scholar

  • Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T., and Yamaguchi, A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179.Google Scholar

  • Nagano, K. and Nikaido, H. (2009). Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 106, 5854–5858.Google Scholar

  • Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., and Yamaguchi, A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565–569.Web of ScienceGoogle Scholar

  • Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., Onodera, Y., Nishino, K., and Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature 500, 102–106.Web of ScienceGoogle Scholar

  • Nikaido, H. (1996). Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178, 5853–5859.Google Scholar

  • Ntsogo Enguene, V.Y., Verchère, A., Phan, G., Broutin, I., and Picard, M. (2015). Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexB-OprM efflux pump from Pseudomonas aeruginosa. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00541.CrossrefGoogle Scholar

  • Ohene-Agyei, T., Lea, J.D., and Venter, H. (2012). Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol. Lett. 333, 20–27.Web of ScienceGoogle Scholar

  • Piddock, L.J. (2006). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402.Google Scholar

  • Piddock, L.J.V (2014). Understanding the basis of antibiotic resistance: a platform for drug discovery. Microbiology 160, 2366–2373.Web of ScienceGoogle Scholar

  • Pos, K.M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochim. Biophys. Acta. 1794, 782–793.Google Scholar

  • Ruggerone, P., Murakami, S., Pos, K.M., Vargiu, A.V, Pos, K.M., and Vargiu, A.V (2013). RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr. Top. Med. Chem. 13, 3079–3100.Web of ScienceGoogle Scholar

  • Seeger, M.A, Schiefner, A., Eicher, T., Verrey, F., Diederichs, K., and Pos, K.M. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298.Google Scholar

  • Seeger, M.A., von Ballmoos, C., Verrey, F., and Pos, K.M. (2009). Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 48, 5801–5812.Google Scholar

  • Su, C.-C.C., Li, M., Gu, R., Takatsuka, Y., McDermott, G., Nikaido, H., and Yu, E.W. (2006). Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J. Bacteriol. 188, 7290–7296.Google Scholar

  • Tikhonova, E.B., Yamada, Y., and Zgurskaya, H.I. (2011). Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem. Biol. 18, 454–463.Google Scholar

  • Vargiu, A.V. and Nikaido, H. (2012). Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 109, 20637–20642.Google Scholar

  • Verchère, A., Dezi, M., Broutin, I., and Picard, M. (2014). In vitro investigation of the MexAB efflux pump from Pseudomonas aeruginosa. J. Vis. Exp. e50894.Google Scholar

  • Verchère, A., Dezi, M., Adrien, V., Broutin, I., and Picard, M. (2015). In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat. Commun. 6, 6890.Google Scholar

  • Yao, X.Q., Kenzaki, H., Murakami, S., and Takada, S. (2010). Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun. 1, 117.Web of ScienceGoogle Scholar

  • Zgurskaya, H.I. and Nikaido, H. (1999a). Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 7190–7195.Google Scholar

  • Zgurskaya, H.I. and Nikaido, H. (1999b). AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285, 409–420.Google Scholar

  • Zgurskaya, H.I., Weeks, J.W., Ntreh, A.T., Nickels, L.M., and Wolloscheck, D. (2015). Mechanism of coupling drug transport reactions located in two different membranes. Front. Microbiol. 6, 100.Web of ScienceGoogle Scholar

About the article

Corresponding author: Klaas Martinus Pos, Institute of Biochemistry, Goethe University Frankfurt, D-60438 Frankfurt/Main, Germany, e-mail:

Received: 2015-03-31

Accepted: 2015-06-03

Published Online: 2015-06-09

Published in Print: 2015-09-01

Citation Information: Biological Chemistry, Volume 396, Issue 9-10, Pages 1083–1089, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0150.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lisa Praski Alzrigat, Douglas L Huseby, Gerrit Brandis, and Diarmaid Hughes
Journal of Antimicrobial Chemotherapy, 2017, Volume 72, Number 11, Page 3016
Muriel Masi, Estelle Dumont, Julia Vergalli, Jelena Pajovic, Matthieu Réfrégiers, and Jean-Marie Pagès
Research in Microbiology, 2017
Cesar A. López, Timothy Travers, Klaas M. Pos, Helen I. Zgurskaya, and S. Gnanakaran
Scientific Reports, 2017, Volume 7, Number 1
A. Gilardi, S.P. Bhamidimarri, M. Brönstrup, U. Bilitewski, R.K.R. Marreddy, K.M. Pos, L. Benier, P. Gribbon, M. Winterhalter, and B. Windshügel
Biochimica et Biophysica Acta (BBA) - General Subjects, 2017
Zhao Wang, Guizhen Fan, Corey F Hryc, James N Blaza, Irina I Serysheva, Michael F Schmid, Wah Chiu, Ben F Luisi, and Dijun Du
eLife, 2017, Volume 6

Comments (0)

Please log in or register to comment.
Log in