Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 397, Issue 1

Issues

IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes

Andreas Becker / Rico Eichentopf / Reinhard Sedlmeier / Alexander Waniek
  • Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Holger Cynis / Birgit Koch / Anett Stephan / Christoph Bäuscher / Stephanie Kohlmann / Torsten Hoffmann / Astrid Kehlen / Sabine Berg
  • Institute of Diabetes “Gerhardt Katsch”, Greifswalder Str. 11e, D-17495 Karlsburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ernst-Joachim Freyse
  • Institute of Diabetes “Gerhardt Katsch”, Greifswalder Str. 11e, D-17495 Karlsburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Osmand
  • Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anne-Christine Plank
  • Department of Experimental Therapy, University of Erlangen-Nürnberg, Franz-Penzoldt-Center, Palmsanlage 5, D-91054 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steffen Roßner
  • Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephan von Hörsten
  • Department of Experimental Therapy, University of Erlangen-Nürnberg, Franz-Penzoldt-Center, Palmsanlage 5, D-91054 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sigrid Graubner / Hans-Ulrich Demuth
  • Ingenium GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
  • Probiodrug AG, Weinbergweg 22, D-06120 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephan Schilling
Published Online: 2015-08-19 | DOI: https://doi.org/10.1515/hsz-2015-0192

Abstract

Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.

This article offers supplementary material which is provided at the end of the article.

Keywords: 5-oxo-L-proline; posttranslational modification; pyroglutamate; TRH

References

  • Alexandru, A., Jagla, W., Graubner, S., Becker, A., Bäuscher, C., Kohlmann, S., Sedlmeier, R., Raber, K., Cynis, H., Rönicke, R., et al. (2011). Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Abeta is induced by pyroglutamate-Aβ formation. J. Neurosci. 31, 12790–12801.Web of ScienceGoogle Scholar

  • Augustin, M., Sedlmeier, R., Peters, T., Huffstadt, U., Kochmann, E., Simon, D., Schöniger, M., Garke-Mayerthaler, S., Laufs, J., Mayhaus, M., et al. (2005). Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome 16, 405–413.Google Scholar

  • Böckers, T., Kreutz, M., and Pohl, T. (1995). Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J. Neuroendocrinol. 7, 445–453.Google Scholar

  • Cruz, I. and Nillni, E. (1996). Intracellular sites of prothyrotropin- releasing hormone processing. J. Biol. Chem. 271, 22736–22745.Google Scholar

  • Cynis, H., Schilling, S., Bodnár, M., Hoffmann, T., Heiser, U., Saido, T., and Demuth, H. (2006). Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim. Biophys. Acta 1764, 1618–1625.Google Scholar

  • Cynis, H., Rahfeld, J., Stephan, A., Kehlen, A., Koch, B., Wermann, M., Demuth, H., and Schilling, S. (2008). Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J. Mol. Biol. 379, 966–980.Web of ScienceGoogle Scholar

  • Cynis, H., Hoffmann, T., Friedrich, D., Kehlen, A., Gans, K., Kleinschmidt, M., Rahfeld, J., Wolf, R., Wermann, M., Stephan, A., et al. (2011). The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol. Med. 3, 545–558.Web of ScienceGoogle Scholar

  • De Kimpe, L., Bennis, A., Zwart, R., van Haastert, E., Hoozemans, J., and Scheper, W. (2012). Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer’s disease in vitro. PLoS One 7, e44674.Google Scholar

  • Gong, J. and Clark-Lewis, I. (1995). Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J. Exp. Med. 181, 631–640.Google Scholar

  • Goren, H., Bauce, L., and Vale, W. (1977). Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor: the pyroglutamic acid moiety. Mol. Pharmacol. 13, 606–614.Google Scholar

  • Hartlage-Rübsamen, M., Staffa, K., Waniek, A., Wermann, M., Hoffmann, T., Cynis, H., Schilling, S., Demuth, H., and Rossner, S. (2009). Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int. J. Dev. Neurosci. 27, 825–835.Google Scholar

  • Hartlage-Rübsamen, M., Morawski, M., Waniek, A., Jäger, C., Zeitschel, U., Koch, B., Cynis, H., Schilling, S., Schliebs, R., Demuth, H., et al. (2011). Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol. 121, 705–719.Web of ScienceGoogle Scholar

  • Höfling, C., Indrischek, H., Höpcke, T., Waniek, A., Cynis, H., Koch, B., Schilling, S., Morawski, M., Demuth, H.U., Roßner, S., et al. (2014). Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int. J. Dev. Neurosci. 36, 64-73.Web of ScienceGoogle Scholar

  • Huang, K., Liu, Y., Cheng, W., Ko, T., and Wang, A. (2005). Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl. Acad. Sci. USA 102, 13117–13122.Google Scholar

  • Huang, K., Liaw, S., Huang, W., Chia, C., Lo, Y., Chen, Y., and Wang, A. (2011). Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J. Biol. Chem. 286, 12439–12449.Web of ScienceGoogle Scholar

  • Iwatsubo, T., Saido, T., Mann, D., Lee, V., and Trojanowski, J. (1996). Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-β 42(43) deposit in diffuse plaques. Am. J. Pathol. 149, 1823–1830.Google Scholar

  • Jawhar, S., Wirths, O., and Bayer, T. (2011a). Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J. Biol. Chem 286, 38825–38832.Google Scholar

  • Jawhar, S., Wirths, O., Schilling, S., Graubner, S., Demuth, H., and Bayer, T. (2011b). Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate Aβ formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J. Biol. Chem 286, 4454–4460.Web of ScienceGoogle Scholar

  • Li, Q., Liu, Z., Monroe, H., and Culiat, C. (2002). Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23, 1499–1511.Google Scholar

  • Mason, A., Hayflick, J., Zoeller, R., Young, W., Phillips, H., Nikolics, K., and Seeburg, P. (1986). A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234, 1366–1371.Google Scholar

  • Morawski, M., Hartlage-Rübsamen, M., Jäger, C., Waniek, A., Schilling, S., Schwab, C., McGeer, P., Arendt, T., Demuth, H., and Roßner, S. (2010). Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Abeta pathology in Alzheimer’s disease. Acta Neuropathol. 120, 195–207.Web of ScienceGoogle Scholar

  • Nillni, E. (1999). Neuroregulation of ProTRH biosynthesis and processing. Endocrine 10, 185–199.Google Scholar

  • Nillni, E. and Sevarino, K. (1999). The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr. Rev. 20, 599–648.Google Scholar

  • Osmand, A., Berthelier, V., and Wetzel, R. (2006). Imaging polyglutamine deposits in brain tissue. Methods Enzymol. 412, 106–122.Web of ScienceGoogle Scholar

  • Saido, T., Iwatsubo, T., Mann, D., Shimada, H., Ihara, Y., and Kawashima, S. (1995). Dominant and differential deposition of distinct beta-amyloid peptide species, Aβ N3(pE), in senile plaques. Neuron 14, 457–466.Google Scholar

  • Saul, A., Lashley, T., Revesz, T., Holton, J., Ghiso, J., Coomaraswamy, J., and Wirths, O. (2013). Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiol. Aging 34, 1416–1425.Web of ScienceGoogle Scholar

  • Schilling, S., Lindner, C., Koch, B., Wermann, M., Rahfeld, J., Bohlen, A., Rudolph, T., Reuter, G., and Demuth, H. (2007). Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization. Biochemistry 46, 10921–10930.Google Scholar

  • Schilling, S., Appl, T., Hoffmann, T., Cynis, H., Schulz, K., Jagla, W., Friedrich, D., Wermann, M., Buchholz, M., Heiser, U., et al. (2008a). Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J. Neurochem 106, 1225–1236.Web of ScienceGoogle Scholar

  • Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al. (2008b). Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111.Web of ScienceGoogle Scholar

  • Schilling, S., Kohlmann, S., Bäuscher, C., Sedlmeier, R., Koch, B., Eichentopf, R., Becker, A., Cynis, H., Hoffmann, T., Berg, S., et al. (2011). Glutaminyl cyclase knock-out mice exhibit slight hypothyroidism but no hypogonadism: implications for enzyme function and drug development. J. Biol. Chem 286, 14199–14208.Web of ScienceGoogle Scholar

  • Sealfon, S., Weinstein, H., and Millar, R. (1997). Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 18, 180–205.Google Scholar

  • Seifert, F., Schulz, K., Koch, B., Manhart, S., Demuth, H., and Schilling, S. (2009). Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 48, 11831–11833.Web of ScienceGoogle Scholar

  • Stephan, A., Wermann, M., Bohlen, A. von, Koch, B., Cynis, H., Demuth, H., and Schilling, S. (2009). Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS J. 276, 6522–6536.Web of ScienceGoogle Scholar

  • Yamada, M., Saga, Y., Shibusawa, N., Hirato, J., Murakami, M., Iwasaki, T., Hashimoto, K., Satoh, T., Wakabayashi, K., Taketo, M., et al. (1997). Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc. Natl. Acad. Sci. USA 94, 10862–10867.Google Scholar

  • Yamada, M., Satoh, T., and Mori, M. (2003). Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid 13, 1111–1121.Google Scholar

About the article

Corresponding author: Stephan Schilling, Probiodrug AG, Weinbergweg 22, D-06120 Halle/Saale, Germany, e-mail:

aAndreas Becker and Rico Eichentopf: These authors contributed equally to this work.

bPresent address: Fraunhofer Institute for Cell Therapy and Immunology


Received: 2015-06-10

Accepted: 2015-08-12

Published Online: 2015-08-19

Published in Print: 2016-01-01


Citation Information: Biological Chemistry, Volume 397, Issue 1, Pages 45–55, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0192.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maike Hartlage-Rübsamen, Alexandra Bluhm, Anke Piechotta, Miriam Linnert, Jens-Ulrich Rahfeld, Hans-Ulrich Demuth, Inge Lues, Peer-Hendrik Kuhn, Stefan Lichtenthaler, Steffen Roßner, and Corinna Höfling
Molecules, 2018, Volume 23, Number 4, Page 924
[2]
Paul Proost, Sofie Struyf, Jo Van Damme, Pierre Fiten, Estefania Ugarte-Berzal, and Ghislain Opdenakker
Journal of Autoimmunity, 2017
[3]
Claudia Spahn, Michael Wermann, Rico Eichentopf, Gerd Hause, Dagmar Schlenzig, and Stephan Schilling
ELECTROPHORESIS, 2017, Volume 38, Number 16, Page 2042
[4]
Van-Hai Hoang, Phuong-Thao Tran, Minghua Cui, Van T. H. Ngo, Jihyae Ann, Jongmi Park, Jiyoun Lee, Kwanghyun Choi, Hanyang Cho, Hee Kim, Hee-Jin Ha, Hyun-Seok Hong, Sun Choi, Young-Ho Kim, and Jeewoo Lee
Journal of Medicinal Chemistry, 2017, Volume 60, Number 6, Page 2573

Comments (0)

Please log in or register to comment.
Log in