Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 397, Issue 11

Issues

Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells

Ilangovan Raju
  • Central Arkansas Veterans Healthcare System, 4300 West 7th St., Little Rock, AR 72205, United States of America
  • Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, #753, Little Rock, AR 72205, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gur P. Kaushal
  • Central Arkansas Veterans Healthcare System, 4300 West 7th St., Little Rock, AR 72205, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Randy S. Haun
  • Corresponding author
  • Central Arkansas Veterans Healthcare System, 4300 West 7th St., Little Rock, AR 72205, United States of America
  • Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, #753, Little Rock, AR 72205, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-08 | DOI: https://doi.org/10.1515/hsz-2015-0307

Abstract

Kallikrein-related peptidase 7 (KLK7) is a serine protease encoded within the kallikrein gene cluster located on human chromosome region 19q13.3-13.4. KLK7 is overexpressed in human pancreatic ductal adenocarcinomas (PDACs), but not in normal pancreas. Examination of KLK7 mRNA levels in pancreatic cancer cell lines revealed that it is readily detected in MIA PaCa-2 and PK-1 cells, but not in Panc-1 cells. Treatment of Panc-1 cells with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) significantly induced KLK7 mRNA expression. Similarly, KLK7 is highly expressed in cervical cancer cells, but its expression in the human cervical cancer cell line HeLa is only detected following TSA treatment. Promoter deletion analysis revealed that the proximal -238 promoter region, containing a putative Sp1-binding site, was sufficient for TSA activation of luciferase reporter activity, which was abrogated by the disruption of the Sp1-binding sequence. Consistent with the notion that TSA induced KLK7 expression via Sp1, co-expression of Sp1 with the KLK7-promoter/luciferase construct produced a significant increase in reporter activity. Chromatin immunoprecipitation (ChIP) analysis revealed enriched Sp1 occupancy on the KLK7 promoter following TSA treatment. Similarly, ChIP analysis showed the histone active mark, H3K4Me3, in the KLK7 promoter region was significantly increased after exposure to TSA.

Keywords: chromatin; epigenetics; KLK7; pancreatic cancer; transcription; trichostatin A

References

  • Ashburner, B.P., Westerheide, S.D., and Baldwin, A.S., Jr. (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell Biol. 21, 7065–7077.Google Scholar

  • Baldwin, A.S., Jr. (1996). The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683.Google Scholar

  • Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.Google Scholar

  • Borgono, C.A., Michael, I.P., and Diamandis, E.P. (2004). Human tissue kallikreins: physiologic roles and applications in cancer. Mol. Cancer Res. 2, 257–280.Google Scholar

  • Camarero, N., Nadal, A., Barrero, M.J., Haro, D., and Marrero, P.F. (2003). Histone deacetylase inhibitors stimulate mitochondrial HMG-CoA synthase gene expression via a promoter proximal Sp1 site. Nucleic Acids Res. 31, 1693–1703.Google Scholar

  • Chen, L.F., Mu, Y., and Greene, W.C. (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548.Google Scholar

  • Clements, J.A., Willemsen, N.M., Myers, S.A., and Dong, Y. (2004). The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit. Rev. Clin. Lab. Sci. 41, 265–312.Google Scholar

  • Debela, M., Magdolen, V., Schechter, N., Valachova, M., Lottspeich, F., Craik, C.S., Choe, Y., Bode, W., and Goettig, P. (2006). Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688.Google Scholar

  • Fujioka, S., Sclabas, G.M., Schmidt, C., Niu, J., Frederick, W.A., Dong, Q.G., Abbruzzese, J.L., Evans, D.B., Baker, C., and Chiao, P.J. (2003). Inhibition of constitutive NF-κB activity by IκB αM suppresses tumorigenesis. Oncogene 22, 1365–1370.Google Scholar

  • Gan, L., Lee, I., Smith, R., Argonza-Barrett, R., Lei, H., McCuaig, J., Moss, P., Paeper, B., and Wang, K. (2000). Sequencing and expression analysis of the serine protease gene cluster located in chromosome 19q13 region. Gene 257, 119–130.Google Scholar

  • Gao, C., Li, X., Lam, M., Liu, Y., Chakraborty, S., and Kao, H.Y. (2006). CRM1 mediates nuclear export of HDAC7 independently of HDAC7 phosphorylation and association with 14-3-3s. FEBS Lett. 580, 5096–5104.Google Scholar

  • Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D., and Schreiber, S.L. (2001). Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843.Google Scholar

  • Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.Google Scholar

  • Harvey, T.J., Hooper, J.D., Myers, S.A., Stephenson, S.A., Ashworth, L.K., and Clements, J.A. (2000). Tissue-specific expression patterns and fine mapping of the human kallikrein (KLK) locus on proximal 19q13.4. J. Biol. Chem. 275, 37397–37406.Google Scholar

  • Herman, J.G., Latif, F., Weng, Y., Lerman, M.I., Zbar, B., Liu, S., Samid, D., Duan, D.S., Gnarra, J.R., Linehan, W.M., et al. (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA. 91, 9700–9704.Google Scholar

  • Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., and Pease, L.R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.Google Scholar

  • Huang, B.H., Laban, M., Leung, C.H., Lee, L., Lee, C.K., Salto-Tellez, M., Raju, G.C., and Hooi, S.C. (2005a). Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ. 12, 395–404.Google Scholar

  • Huang, W., Zhao, S., Ammanamanchi, S., Brattain, M., Venkatasubbarao, K., and Freeman, J.W. (2005b). Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J. Biol. Chem. 280, 10047–10054.Google Scholar

  • Iakovlev, V., Siegel, E.R., Tsao, M.S., and Haun, R.S. (2012). Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 21, 1135–1142.Google Scholar

  • Ishii, S., Kurasawa, Y., Wong, J., and Yu-Lee, L.Y. (2008). Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl. Acad. Sci. USA. 105, 4179–4184.Google Scholar

  • Johnson, S.K., Ramani, V.C., Hennings, L., and Haun, R.S. (2007). Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 109, 1811–1820.Google Scholar

  • Kim, S.Y., Woo, M.S., Kim, W.K., Choi, E.C., Henson, J.W., and Kim, H.S. (2003). Glial cell-specific regulation of the JC virus early promoter by histone deacetylase inhibitors. J. Virol. 77, 3394–3401.Google Scholar

  • Kobari, M., Hisano, H., Matsuno, S., Sato, T., Kan, M., and Tachibana, T. (1986). Establishment of six human pancreatic cancer cell lines and their sensitivities to anti-tumor drugs. Tohoku. J. Exp. Med. 150, 231–248.Google Scholar

  • Lee, C. and Huang, C.H. (2013). LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Biotechniques 54, 141–153.Google Scholar

  • Lee, H., Sengupta, N., Villagra, A., Rezai-Zadeh, N., and Seto, E. (2006). Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol. Cell Biol. 26, 5259–5269.Google Scholar

  • Li, L.C. and Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford) 18, 1427–1431.Google Scholar

  • Liu, F., Dowling, M., Yang, X.J., and Kao, G.D. (2004). Caspase-mediated specific cleavage of human histone deacetylase 4. J. Biol. Chem. 279, 34537–34546.Google Scholar

  • Pakneshan, P., Szyf, M., Farias-Eisner, R., and Rabbani, S.A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J. Biol. Chem. 279, 31735–31744.Google Scholar

  • Pampalakis, G. and Sotiropoulou, G. (2006). Multiple mechanisms underlie the aberrant expression of the human kallikrein 6 gene in breast cancer. Biol. Chem. 387, 773–782.Google Scholar

  • Patra, S.K., Deb, M. and Patra, A. (2011). Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin. Epigenetics 2, 27–53.Google Scholar

  • Philip, S., Zahoor, M.A., Zhi, H., Ho, Y.K. and Giam, C.Z. (2014). Regulation of human T-lymphotropic virus type I latency and reactivation by HBZ and Rex. PLoS Pathog 10, e1004040.CrossrefGoogle Scholar

  • Planque, C., de Monte, M., Guyetant, S., Rollin, J., Desmazes, C., Panel, V., Lemarie, E., and Courty, Y. (2005). KLK5 and KLK7, two members of the human tissue kallikrein family, are differentially expressed in lung cancer. Biochem. Biophys. Res. Commun. 329, 1260–1266.Google Scholar

  • Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., et al. (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527.Google Scholar

  • Pufahl, L., Katryniok, C., Schnur, N., Sorg, B.L., Metzner, J., Grez, M., and Steinhilber, D. (2012). Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3. J. Cell Mol. Med. 16, 1461–1473.Google Scholar

  • Ramani, V.C. and Haun, R.S. (2008a). Expression of kallikrein 7 diminishes pancreatic cancer cell adhesion to vitronectin and enhances urokinase-type plasminogen activator receptor shedding. Pancreas 37, 399–404.Google Scholar

  • Ramani, V.C. and Haun, R.S. (2008b). The extracellular matrix protein fibronectin is a substrate for kallikrein 7. Biochem. Biophys. Res. Commun. 369, 1169–1173.Google Scholar

  • Ramani, V.C., Hennings, L., and Haun, R.S. (2008). Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 8, 373.Google Scholar

  • Ramani, V.C., Kaushal, G.P., and Haun, R.S. (2011). Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. Biochim. Biophys. Acta Mol. Cell Res. 1813, 1525–1531.Google Scholar

  • Ruckert, F., Hennig, M., Petraki, C.D., Wehrum, D., Distler, M., Denz, A., Schroder, M., Dawelbait, G., Kalthoff, H., Saeger, H.D., et al. (2008). Co-expression of KLK6 and KLK10 as prognostic factors for survival in pancreatic ductal adenocarcinoma. Br. J. Cancer 99, 1484–1492.Google Scholar

  • Santin, A.D., Cane, S., Bellone, S., Bignotti, E., Palmieri, M., De Las Casas, L.E., Roman, J.J., Anfossi, S., O’Brien, T., and Pecorelli, S. (2004). The serine protease stratum corneum chymotryptic enzyme (kallikrein 7) is highly overexpressed in squamous cervical cancer cells. Gynecol. Oncol. 94, 283–288.Google Scholar

  • Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411.Google Scholar

  • Senese, S., Zaragoza, K., Minardi, S., Muradore, I., Ronzoni, S., Passafaro, A., Bernard, L., Draetta, G.F., Alcalay, M., Seiser, C., et al. (2007). Role for histone deacetylase 1 in human tumor cell proliferation. Mol. Cell Biol. 27, 4784–4795.Google Scholar

  • Shukeir, N., Pakneshan, P., Chen, G., Szyf, M., and Rabbani, S.A. (2006). Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 66, 9202–9210.Google Scholar

  • Sowa, Y., Orita, T., Minamikawa-Hiranabe, S., Mizuno, T., Nomura, H., and Sakai, T. (1999). Sp3, but not Sp1, mediates the transcriptional activation of the p21/WAF1/Cip1 gene promoter by histone deacetylase inhibitor. Cancer Res. 59, 4266–4270.Google Scholar

  • Strahl, B.D., Ohba, R., Cook, R.G., and Allis, C.D. (1999). Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA. 96, 14967–14972.Google Scholar

  • Talieri, M., Diamandis, E.P., Gourgiotis, D., Mathioudaki, K., and Scorilas, A. (2004). Expression analysis of the human kallikrein 7 (KLK7) in breast tumors: a new potential biomarker for prognosis of breast carcinoma. Thromb. Haemost. 91, 180–186.Google Scholar

  • Tamir, A., Jag, U., Sarojini, S., Schindewolf, C., Tanaka, T., Gharbaran, R., Patel, H., Sood, A., Hu, W., Patwa, R., et al. (2014). Kallikrein family proteases KLK6 and KLK7 are potential early detection and diagnostic biomarkers for serous and papillary serous ovarian cancer subtypes. J. Ovarian. Res. 7, 109.CrossrefGoogle Scholar

  • Tanimoto, H., Underwood, L.J., Shigemasa, K., Yan Yan, M.S., Clarke, J., Parmley, T.H., and O’Brien, T. J. (1999). The stratum corneum chymotryptic enzyme that mediates shedding and desquamation of skin cells is highly overexpressed in ovarian tumor cells. Cancer 86, 2074–2082.Google Scholar

  • Taniura, S., Kamitani, H., Watanabe, T., and Eling, T.E. (2002). Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J. Biol. Chem. 277, 16823–16830.Google Scholar

  • Walker, F., Nicole, P., Jallane, A., Soosaipillai, A., Mosbach, V., Oikonomopoulou, K., Diamandis, E.P., Magdolen, V., and Darmoul, D. (2014). Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biol. Chem. 395, 1075–1086.Google Scholar

  • Walker, G.E., Wilson, E.M., Powell, D., and Oh, Y. (2001). Butyrate, a histone deacetylase inhibitor, activates the human IGF binding protein-3 promoter in breast cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein complex. Endocrinology 142, 3817–3827.Google Scholar

  • Wang, W., Abbruzzese, J.L., Evans, D.B., Larry, L., Cleary, K.R., and Chiao, P.J. (1999). The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. 5, 119–127.Google Scholar

  • Xiao, H., Hasegawa, T., and Isobe, K. (1999). Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J. Cell Biochem. 73, 291–302.Google Scholar

  • Yousef, G.M. and Diamandis, E.P. (2001). The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev. 22, 184–204.Google Scholar

  • Zhang, Y., Liao, M., and Dufau, M.L. (2006). Phosphatidylinositol 3-kinase/protein kinase Cζ-induced phosphorylation of Sp1 and p107 repressor release have a critical role in histone deacetylase inhibitor-mediated derepression of transcription of the luteinizing hormone receptor gene. Mol. Cell Biol. 26, 6748–6761.Google Scholar

  • Zhao, S., Venkatasubbarao, K., Li, S., and Freeman, J.W. (2003). Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor β Type II receptor expression in human pancreatic cancer cells. Cancer Res. 63, 2624–2630.Google Scholar

About the article

Received: 2015-12-18

Accepted: 2016-06-05

Published Online: 2016-06-08

Published in Print: 2016-11-01


Citation Information: Biological Chemistry, Volume 397, Issue 11, Pages 1135–1146, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0307.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ursula Kahler, Julian E. Fuchs, Peter Goettig, and Klaus R. Liedl
Journal of Biomolecular Structure and Dynamics, 2018, Page 1
[2]
Juliane Weiner, Kerstin Rohde, Kerstin Krause, Konstanze Zieger, Nora Klöting, Susan Kralisch, Peter Kovacs, Michael Stumvoll, Matthias Blüher, Yvonne Böttcher, and John T. Heiker
Molecular Metabolism, 2017
[3]
L. Tombolan, E. Poli, P. Martini, A. Zin, C. Millino, B. Pacchioni, B. Celegato, G. Bisogno, C. Romualdi, A. Rosolen, and G. Lanfranchi
BMC Cancer, 2016, Volume 16, Number 1

Comments (0)

Please log in or register to comment.
Log in