Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 397, Issue 12


The power, pitfalls and potential of the nanodisc system for NMR-based studies

Aldino ViegasORCID iD: http://orcid.org/0000-0003-1733-136X / Thibault Viennet
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel EtzkornORCID iD: http://orcid.org/0000-0002-9796-3246
  • Corresponding author
  • Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
  • Institute of Complex Systems, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany
  • orcid.org/0000-0002-9796-3246
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-23 | DOI: https://doi.org/10.1515/hsz-2016-0224


The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.

Keywords: membrane proteins; nanodiscs; NMR


  • Ajees, A.A., Anantharamaiah, G.M., Mishra, V.K., Hussain, M.M., and Murthy, H.M. (2006). Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc. Natl. Acad. Sci. USA 103, 2126–2131.Google Scholar

  • Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S.G., and Duong, F. (2007). Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004.Google Scholar

  • Anantharamaiah, G.M., Jones, J.L., Brouillette, C.G., Schmidt, C.F., Chung, B.H., Hughes, T.A., Bhown, A.S., and Segrest, J.P. (1985). Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J. Biol. Chem. 260, 10248–10255.Google Scholar

  • Baas, B.J., Denisov, I.G., and Sligar, S.G. (2004). Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 430, 218–228.Google Scholar

  • Baker, S.E., Hopkins, R.C., Blanchette, C.D., Walsworth, V.L., Sumbad, R., Fischer, N.O., Kuhn, E.A., Coleman, M., Chromy, B.A., Letant, S.E., et al. (2009). Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. J. Am. Chem. Soc. 131, 7508–7509.Google Scholar

  • Banerjee, S., Huber, T., and Sakmar, T.P. (2008). Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J. Mol. Biol. 377, 1067–1081.Google Scholar

  • Bao, H., Goldschen-Ohm, M., Jeggle, P., Chanda, B., Edwardson, J.M., and Chapman, E.R. (2016). Exocytotic fusion pores are composed of both lipids and proteins. Nat. Struct. Mol. Biol. 23, 67–73.Google Scholar

  • Bayburt, T.H. and Sligar, S.G. (2003). Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12, 2476–2481.Google Scholar

  • Bayburt, T.H. and Sligar, S.G. (2010). Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721–1727.Google Scholar

  • Bayburt, T.H., Carlson, J.W., and Sligar, S.G. (1998). Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 123, 37–44.Google Scholar

  • Bayburt, T.H., Grinkova, Y.V., and Sligar, S.G. (2002). Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856.Google Scholar

  • Bayburt, T.H., Grinkova, Y.V., and Sligar, S.G. (2006). Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 450, 215–222.Google Scholar

  • Bayburt, T.H., Leitz, A.J., Xie, G., Oprian, D.D., and Sligar, S.G. (2007). Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881.Google Scholar

  • Bhat, S., Sorci-Thomas, M.G., Tuladhar, R., Samuel, M.P., and Thomas, M.J. (2007). Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes. Biochemistry 46, 7811–7821.Google Scholar

  • Bibow, S., Carneiro, M.G., Sabo, T.M., Schwiegk, C., Becker, S., Riek, R., and Lee, D. (2014). Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Sci. 23, 851–856.Google Scholar

  • Bocquet, N., Kohler, J., Hug, M.N., Kusznir, E.A., Rufer, A.C., Dawson, R.J., Hennig, M., Ruf, A., Huber, W., and Huber, S. (2015). Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim. Biophys. Acta 1848, 1224–1233.Google Scholar

  • Boettcher, J.M., Davis-Harrison, R.L., Clay, M.C., Nieuwkoop, A.J., Ohkubo, Y.Z., Tajkhorshid, E., Morrissey, J.H., and Rienstra, C.M. (2011). Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 50, 2264–2273.Google Scholar

  • Boldog, T., Li, M., and Hazelbauer, G.L. (2007) Using nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. In: Methods Enzymol., Vol. 423, Melvin, I. Simon, Crane, Alexandrine, eds. (New York: Elsevier Inc.), pp. 317–335.Google Scholar

  • Borch, J. and Hamann, T. (2009). The nanodisc: a novel tool for membrane protein studies. Biol. Chem. 390, 805–814.Google Scholar

  • Borch, J., Torta, F., Sligar, S.G., and Roepstorff, P. (2008). Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal. Chem. 80, 6245–6252.Google Scholar

  • Borhani, D.W., Rogers, D.P., Engler, J.A., and Brouillette, C.G. (1997). Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl. Acad. Sci. USA 94, 12291–12296.Google Scholar

  • Brewer, K.D., Li, W., Horne, B.E., and Rizo, J. (2011). Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proc. Natl. Acad. Sci. USA 108, 12723–12728.Google Scholar

  • Brouillette, C.G. and Anantharamaiah, G.M. (1995). Structural models of human apolipoprotein A-I. Biochim. Biophys. Acta 1256, 103–129.Google Scholar

  • Brouillette, C.G., Anantharamaiah, G.M., Engler, J.A., and Borhani, D.W. (2001). Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta 1531, 4–46.Google Scholar

  • Cappuccio, J.A., Blanchette, C.D., Sulchek, T.A., Arroyo, E.S., Kralj, J.M., Hinz, A.K., Kuhn, E.A., Chromy, B.A., Segelke, B.W., Rothschild, K.J., et al. (2008). Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol. Cell. Proteomics 7, 2246–2253.Google Scholar

  • Catoire, L.J., Warnet, X.L., and Warschawski, D.E. (2014). Micelles, bicelles, amphipols, nanodiscs, liposomes, or intact cells: the hitchhiker’s guide to the study of membrane proteins by NMR. In: Membrane Proteins Production for Structural Analysis. Isabelle Mus-Veteau, ed. (New York: Springer), pp. 315–345.Google Scholar

  • Chromy, B.A., Arroyo, E., Blanchette, C.D., Bench, G., Benner, H., Cappuccio, J.A., Coleman, M.A., Henderson, P.T., Hinz, A.K., Kuhn, E.A., et al. (2007). Different apolipoproteins impact nanolipoprotein particle formation. J. Am. Chem. Soc. 129, 14348–14354.Google Scholar

  • Civjan, N.R., Bayburt, T.H., Schuler, M.A., and Sligar, S.G. (2003). Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. BioTechniques 35, 556–560, 562–563.Google Scholar

  • D’Antona, A.M., Xie, G., Sligar, S.G., and Oprian, D.D. (2014). Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers. Biochemistry 53, 127–134.Google Scholar

  • Dalal, K., Nguyen, N., Alami, M., Tan, J., Moraes, T.F., Lee, W.C., Maurus, R., Sligar, S.S., Brayer, G.D., and Duong, F. (2009). Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284, 7897–7902.Google Scholar

  • Denisov, I.G. and Sligar, S.G. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23, 481–486.Google Scholar

  • Denisov, I.G., Grinkova, Y.V., Lazarides, A.A., and Sligar, S.G. (2004). Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487.Google Scholar

  • Denisov, I.G., McLean, M.A., Shaw, A.W., Grinkova, Y.V., and Sligar, S.G. (2005). Thermotropic phase transition in soluble nanoscale lipid bilayers. J. Phys. Chem. B 109, 15580–15588.Google Scholar

  • Ding, Y., Yao, Y., and Marassi, F.M. (2013). Membrane protein structure determination in membrana. Acc. Chem. Res. 46, 2182–2190.Google Scholar

  • Ding, Y., Fujimoto, L.M., Yao, Y., and Marassi, F.M. (2015a). Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. J. Biomol. NMR 61, 275–286.Google Scholar

  • Ding, Y., Fujimoto, L.M., Yao, Y., Plano, G.V., and Marassi, F.M. (2015b). Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. Biochim. Biophys. Acta 1848, 712–720.Google Scholar

  • Dorr, J.M., Koorengevel, M.C., Schafer, M., Prokofyev, A.V., Scheidelaar, S., van der Cruijsen, E.A., Dafforn, T.R., Baldus, M., and Killian, J.A. (2014). Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc. Natl. Acad. Sci. USA 111, 18607–18612.Google Scholar

  • Dorr, J.M., Scheidelaar, S., Koorengevel, M.C., Dominguez, J.J., Schafer, M., van Walree, C.A., and Killian, J.A. (2016). The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 45, 3–21.Google Scholar

  • Duan, H., Civjan, N.R., Sligar, S.G., and Schuler, M.A. (2004). Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch. Biochem. Biophys. 424, 141–153.Google Scholar

  • Eggensperger, S., Fisette, O., Parcej, D., Schafer, L.V., and Tampe, R. (2014). An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J. Biol. Chem. 289, 33098–33108.Google Scholar

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., and Wagner, G. (2013). Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401.Google Scholar

  • Fernandez, C., Hilty, C., Wider, G., Guntert, P., and Wuthrich, K. (2004). NMR structure of the integral membrane protein OmpX. J. Mol. Biol. 336, 1211–1221.Google Scholar

  • Fox, D.A., Larsson, P., Lo, R.H., Kroncke, B.M., Kasson, P.M., and Columbus, L. (2014). Structure of the Neisserial outer membrane protein Opa60: loop flexibility essential to receptor recognition and bacterial engulfment. J. Am. Chem. Soc. 136, 9938–9946.Google Scholar

  • Frauenfeld, J., Gumbart, J., Sluis, E.O., Funes, S., Gartmann, M., Beatrix, B., Mielke, T., Berninghausen, O., Becker, T., Schulten, K., et al. (2011). Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 18, 614–621.Google Scholar

  • Frauenfeld, J., Loving, R., Armache, J.P., Sonnen, A.F., Guettou, F., Moberg, P., Zhu, L., Jegerschold, C., Flayhan, A., Briggs, J.A., et al. (2016). A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351.Google Scholar

  • Gao, T., Petrlova, J., He, W., Huser, T., Kudlick, W., Voss, J., and Coleman, M.A. (2012). Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS One 7, e44911.Google Scholar

  • Gao, Y., Cao, E., Julius, D., and Cheng, Y. (2016). TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351.Google Scholar

  • Gluck, J.M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D., and Koenig, B.W. (2009). Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J. Am. Chem. Soc. 131, 12060–12061.Google Scholar

  • Grinkova, Y.V., Denisov, I.G., and Sligar, S.G. (2010). Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23, 843–848.Google Scholar

  • Guo, C., Zhang, D., and Tugarinov, V. (2008). An NMR experiment for simultaneous TROSY-based detection of amide and methyl groups in large proteins. J. Am. Chem. Soc. 130, 10872–10873.Google Scholar

  • Hagn, F. and Wagner, G. (2015). Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J. Biomol. NMR 61, 249–260.Google Scholar

  • Hagn, F., Etzkorn, M., Raschle, T., and Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925.Google Scholar

  • Hartley, M.D., Schneggenburger, P.E., and Imperiali, B. (2013). Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proc. Natl. Acad. Sci. USA 110, 20863–20870.Google Scholar

  • Hiller, S. and Wagner, G. (2012) Solution NMR spectroscopy of integral membrane proteins. In: Comprehensive Biophysics, Vol 5, Egelman, Tamm. eds. (Burlington: Elsevier Inc.), pp 120–138.Google Scholar

  • Imai, S., Osawa, M., Mita, K., Toyonaga, S., Machiyama, A., Ueda, T., Takeuchi, K., Oiki, S., and Shimada, I. (2012). Functional equilibrium of the KcsA structure revealed by NMR. J. Biol. Chem. 287, 39634–39641.Google Scholar

  • Inagaki, S., Ghirlando, R., White, J.F., Gvozdenovic-Jeremic, J., Northup, J.K., and Grisshammer, R. (2012). Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417, 95–111.Google Scholar

  • Inagaki, S., Ghirlando, R., and Grisshammer, R. (2013). Biophysical characterization of membrane proteins in nanodiscs. Methods 59, 287–300.Google Scholar

  • Katayama, H., Wang, J., Tama, F., Chollet, L., Gogol, E.P., Collier, R.J., and Fisher, M.T. (2010). Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc. Natl. Acad. Sci. USA 107, 3453–3457.Google Scholar

  • Katzen, F., Fletcher, J.E., Yang, J.P., Kang, D., Peterson, T.C., Cappuccio, J.A., Blanchette, C.D., Sulchek, T., Chromy, B.A., Hoeprich, P.D., et al. (2008). Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J. Proteome Res. 7, 3535–3542.Google Scholar

  • Kawai, T., Caaveiro, J.M., Abe, R., Katagiri, T., and Tsumoto, K. (2011). Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett. 585, 3533–3537.Google Scholar

  • Kedrov, A., Sustarsic, M., de Keyzer, J., Caumanns, J.J., Wu, Z.C., and Driessen, A.J. (2013). Elucidating the native architecture of the YidC: ribosome complex. J. Mol. Biol. 425, 4112–4124.Google Scholar

  • Kijac, A.Z., Li, Y., Sligar, S.G., and Rienstra, C.M. (2007). Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703.Google Scholar

  • Kijac, A., Shih, A.Y., Nieuwkoop, A.J., Schulten, K., Sligar, S.G., and Rienstra, C.M. (2010). Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. Biochemistry 49, 9190–9198.Google Scholar

  • Klammt, C., Maslennikov, I., Bayrhuber, M., Eichmann, C., Vajpai, N., Chiu, E.J., Blain, K.Y., Esquivies, L., Kwon, J.H., Balana, B., et al. (2012). Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat. Methods 9, 834–839.Google Scholar

  • Knowles, T.J., Finka, R., Smith, C., Lin, Y.P., Dafforn, T., and Overduin, M. (2009). Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485.Google Scholar

  • Kobashigawa, Y., Harada, K., Yoshida, N., Ogura, K., and Inagaki, F. (2011). Phosphoinositide-incorporated lipid-protein nanodiscs: a tool for studying protein-lipid interactions. Anal. Biochem. 410, 77–83.Google Scholar

  • Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Mizumura, T., Suzuki, S., and Shimada, I. (2014). Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. Ed. 53, 13376–13379.Google Scholar

  • Kucharska, I., Edrington, T.C., Liang, B., and Tamm, L.K. (2015). Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins. J. Biomol. NMR 61, 261–274.Google Scholar

  • Lee, T.Y., Yeh, V., Chuang, J., Chung Chan, J.C., Chu, L.K., and Yu, T.Y. (2015). Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys. J. 109, 1899–1906.Google Scholar

  • Lee, S.C., Knowles, T.J., Postis, V.L., Jamshad, M., Parslow, R.A., Lin, Y.P., Goldman, A., Sridhar, P., Overduin, M., Muench, S.P., et al. (2016). A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat. Protoc. 11, 1149–1162.Google Scholar

  • Leitz, A., Bayburt, T., Barnakov, A., Springer, B., and Sligar, S. (2006). Functional reconstitution of β2-adrenergic receptors utilizing self-assembling Nanodisc technology. BioTechniques 40, 601–612.Google Scholar

  • Leney, A.C., Fan, X., Kitova, E.N., and Klassen, J.S. (2014). Nanodiscs and electrospray ionization mass spectrometry: a tool for screening glycolipids against proteins. Anal. Chem. 86, 5271–5277.Google Scholar

  • Li, Y., Kijac, A.Z., Sligar, S.G., and Rienstra, C.M. (2006). Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys. J. 91, 3819–3828.Google Scholar

  • Liang, B. and Tamm, L.K. (2016). NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat. Struct. Mol. Biol. 23, 468–474.Google Scholar

  • Long, A.R., O’Brien, C.C., Malhotra, K., Schwall, C.T., Albert, A.D., Watts, A., and Alder, N.N. (2013). A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol. 13, 41.Google Scholar

  • Lyukmanova, E.N., Shenkarev, Z.O., Paramonov, A.S., Sobol, A.G., Ovchinnikova, T.V., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., and Arseniev, A.S. (2008). Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides. J. Am. Chem. Soc. 130, 2140–2141.Google Scholar

  • Lyukmanova, E.N., Shenkarev, Z.O., Khabibullina, N.F., Kopeina, G.S., Shulepko, M.A., Paramonov, A.S., Mineev, K.S., Tikhonov, R.V., Shingarova, L.N., Petrovskaya, L.E., et al. (2012). Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta 1818, 349–358.Google Scholar

  • Mazhab-Jafari, M.T., Marshall, C.B., Stathopulos, P.B., Kobashigawa, Y., Stambolic, V., Kay, L.E., Inagaki, F., and Ikura, M. (2013). Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J. Am. Chem. Soc. 135, 3367–3370.Google Scholar

  • Mazhab-Jafari, M.T., Marshall, C.B., Smith, M.J., Gasmi-Seabrook, G.M., Stathopulos, P.B., Inagaki, F., Kay, L.E., Neel, B.G., and Ikura, M. (2015). Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc. Natl. Acad. Sci. USA 112, 6625–6630.Google Scholar

  • Mi, L.Z., Grey, M.J., Nishida, N., Walz, T., Lu, C., and Springer, T.A. (2008). Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Biochemistry 47, 10314–10323.Google Scholar

  • Mineev, K.S., Goncharuk, S.A., Kuzmichev, P.K., Vilar, M., and Arseniev, A.S. (2015). NMR dynamics of transmembrane and intracellular domains of p75NTR in lipid-protein nanodiscs. Biophys. J. 109, 772–782.Google Scholar

  • Mitra, N., Liu, Y., Liu, J., Serebryany, E., Mooney, V., DeVree, B.T., Sunahara, R.K., Yan, E.C. (2013). Calcium-dependent ligand binding and G-protein signaling of family B GPCR parathyroid hormone 1 receptor purified in nanodiscs. ACS Chem. Biol. 8, 617–625.Google Scholar

  • Morgado, L., Zeth, K., Burmann, B.M., Maier, T., and Hiller, S. (2015). Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. J. Biomol. NMR 61, 333–345.Google Scholar

  • Mors, K., Roos, C., Scholz, F., Wachtveitl, J., Dotsch, V., Bernhard, F., and Glaubitz, C. (2013). Modified lipid and protein dynamics in nanodiscs. Biochim. Biophys. Acta 1828, 1222–1229.Google Scholar

  • Nasvik Ojemyr, L., von Ballmoos, C., Gennis, R.B., Sligar, S.G., and Brzezinski, P. (2012). Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer. FEBS Lett. 586, 640–645.Google Scholar

  • Ni, D., Wang, Y., Yang, X., Zhou, H., Hou, X., Cao, B., Lu, Z., Zhao, X., Yang, K., and Huang, Y. (2014). Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli. FASEB J. 28, 2677–2685.Google Scholar

  • Okude, J., Ueda, T., Kofuku, Y., Sato, M., Nobuyama, N., Kondo, K., Shiraishi, Y., Mizumura, T., Onishi, K., Natsume, M., et al. (2015). Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the μ-opioid receptor. Angew. Chem. Int. Ed. 54, 15771–15776.Google Scholar

  • Opella, S.J. (2013). Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 6, 305–328.Google Scholar

  • Orwick, M.C., Judge, P.J., Procek, J., Lindholm, L., Graziadei, A., Engel, A., Grobner, G., and Watts, A. (2012). Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew. Chem. Int. Ed. 51, 4653–4657.Google Scholar

  • Orwick-Rydmark, M., Lovett, J.E., Graziadei, A., Lindholm, L., Hicks, M.R., and Watts, A. (2012). Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12, 4687–4692.Google Scholar

  • Park, S.H., Berkamp, S., Cook, G.A., Chan, M.K., Viadiu, H., and Opella, S.J. (2011). Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50, 8983–8985.Google Scholar

  • Phillips, J.C., Wriggers, W., Li, Z., Jonas, A., and Schulten, K. (1997). Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys. J. 73, 2337–2346.Google Scholar

  • Popot, J.L. (2010). Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79, 737–775.Google Scholar

  • Postis, V., Rawson, S., Mitchell, J.K., Lee, S.C., Parslow, R.A., Dafforn, T.R., Baldwin, S.A., and Muench, S.P. (2015). The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta 1848, 496–501.Google Scholar

  • Proverbio, D., Roos, C., Beyermann, M., Orban, E., Dotsch, V., and Bernhard, F. (2013). Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. Biochim. Biophys. Acta 1828, 2182–2192.Google Scholar

  • Puthenveetil, R. and Vinogradova, O. (2013). Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Proteins: Struct. Funct. Bioinf. 81, 1222–1231.Google Scholar

  • Rajesh, S., Knowles, T., and Overduin, M. (2011). Production of membrane proteins without cells or detergents. Nat. Biotechnol. 28, 250–254.Google Scholar

  • Raschle, T., Hiller, S., Yu, T.Y., Rice, A.J., Walz, T., and Wagner, G. (2009). Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 17777–17779.Google Scholar

  • Raschle, T., Hiller, S., Etzkorn, M., and Wagner, G. (2010). Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20, 471–479.Google Scholar

  • Raschle, T., Lin, C., Jungmann, R., Shih, W.M., and Wagner, G. (2015). Controlled Co-reconstitution of multiple membrane proteins in lipid bilayer nanodiscs using DNA as a scaffold. ACS Chem. Biol. 10, 2448–2454.Google Scholar

  • Reichart, T.M., Baksh, M.M., Rhee, J.K., Fiedler, J.D., Sligar, S.G., Finn, M.G., Zwick, M.B., and Dawson, P.E. (2016). Trimerization of the HIV transmembrane domain in lipid bilayers modulates broadly neutralizing antibody binding. Angew. Chem. Int. Ed. 55, 2688–2692.Google Scholar

  • Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., and Sligar, S.G. (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. In: Methods Enzymol., Vol. 464, Nejat. eds. (New York: Elsevier Inc.), pp. 211–231.Google Scholar

  • Roos, C., Zocher, M., Muller, D., Munch, D., Schneider, T., Sahl, H.G., Scholz, F., Wachtveitl, J., Ma, Y., Proverbio, D., et al. (2012). Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim. Biophys. Acta 1818, 3098–3106.Google Scholar

  • Roos, C., Kai, L., Proverbio, D., Ghoshdastider, U., Filipek, S., Dotsch, V., and Bernhard, F. (2013). Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30, 75–89.Google Scholar

  • Roy, J., Pondenis, H., Fan, T.M., and Das, A. (2015). Direct capture of functional proteins from mammalian plasma membranes into nanodiscs. Biochemistry 54, 6299–6302.Google Scholar

  • Rues, R.-B., Dötsch, V., and Bernhard, F. (2016). Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim. Biophys. Acta 1858, 1306–1316.Google Scholar

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wuthrich, K. (1998). TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590.Google Scholar

  • Schuler, M.A., Denisov, I.G., and Sligar, S.G. (2013) Nanodiscs as a new tool to examine lipid-protein interactions. In: Lipid-Protein Interactions, Vol. 974, Kleinschmidt. eds. (New York: Springer), pp. 415–433.Google Scholar

  • Schwarz, D., Junge, F., Durst, F., Frolich, N., Schneider, B., Reckel, S., Sobhanifar, S., Dotsch, V., and Bernhard, F. (2007). Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2, 2945–2957.Google Scholar

  • Segrest, J.P. (1977). Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem. Phys. Lipids 18, 7–22.Google Scholar

  • Segrest, J.P., Jones, M.K., Klon, A.E., Sheldahl, C.J., Hellinger, M., De Loof, H., and Harvey, S.C. (1999). A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J. Biol. Chem. 274, 31755–31758.Google Scholar

  • Shaw, A.W., McLean, M.A., and Sligar, S.G. (2004). Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett. 556, 260–264.Google Scholar

  • Shaw, A.W., Pureza, V.S., Sligar, S.G., and Morrissey, J.H. (2007). The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 282, 6556–6563.Google Scholar

  • Shenkarev, Z.O., Lyukmanova, E.N., Solozhenkin, O.I., Gagnidze, I.E., Nekrasova, O.V., Chupin, V.V., Tagaev, A.A., Yakimenko, Z.A., Ovchinnikova, T.V., Kirpichnikov, M.P., et al. (2009). Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry (Moscow) 74, 756–765.Google Scholar

  • Shenkarev, Z.O., Lyukmanova, E.N., Paramonov, A.S., Shingarova, L.N., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., and Arseniev, A.S. (2010a). Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J. Am. Chem. Soc. 132, 5628–5629.Google Scholar

  • Shenkarev, Z.O., Paramonov, A.S., Lyukmanova, E.N., Shingarova, L.N., Yakimov, S.A., Dubinnyi, M.A., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., and Arseniev, A.S. (2010b). NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J. Am. Chem. Soc. 132, 5630–5637.Google Scholar

  • Shenkarev, Z.O., Lyukmanova, E.N., Paramonov, A.S., Panteleev, P.V., Balandin, S.V., Shulepko, M.A., Mineev, K.S., Ovchinnikova, T.V., Kirpichnikov, M.P., and Arseniev, A.S. (2014). Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae 6, 84–94.Google Scholar

  • Shi, L., Shen, Q.T., Kiel, A., Wang, J., Wang, H.W., Melia, T.J., Rothman, J.E., and Pincet, F. (2012). SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335, 1355–1359.Google Scholar

  • Shi, L., Howan, K., Shen, Q.T., Wang, Y.J., Rothman, J.E., and Pincet, F. (2013). Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat. Protoc. 8, 935–948.Google Scholar

  • Shih, A.Y., Denisov, I.G., Phillips, J.C., Sligar, S.G., and Schulten, K. (2005). Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys. J. 88, 548–556.Google Scholar

  • Shih, A.Y., Arkhipov, A., Freddolino, P.L., Sligar, S.G., and Schulten, K. (2007a). Assembly of lipids and proteins into lipoprotein particles. J. Phys. Chem. B 111, 11095–11104.Google Scholar

  • Shih, A.Y., Freddolino, P.L., Arkhipov, A., and Schulten, K. (2007b). Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J. Struct. Biol. 157, 579–592.Google Scholar

  • Shih, A.Y., Sligar, S.G., and Schulten, K. (2009). Maturation of high-density lipoproteins. J. R. Soc. Interface 6, 863–871.Google Scholar

  • Skar-Gislinge, N., Simonsen, J.B., Mortensen, K., Feidenhans’l R., Sligar, S.G., Lindberg Moller, B., Bjornholm, T., and Arleth, L. (2010). Elliptical structure of phospholipid bilayer nanodiscs encapsulated by scaffold proteins: casting the roles of the lipids and the protein. J. Am. Chem. Soc. 132, 13713–13722.Google Scholar

  • Susac, L., Horst, R., and Wuthrich, K. (2014). Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. ChemBioChem 15, 995–1000.Google Scholar

  • Thomas, M.J., Bhat, S., and Sorci-Thomas, M.G. (2008). Three-dimensional models of HDL apoA-I: implications for its assembly and function. J. Lipid Res. 49, 1875–1883.Google Scholar

  • Tsukamoto, H., Sinha, A., DeWitt, M., and Farrens, D.L. (2010). Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J. Mol. Biol. 399, 501–511.Google Scholar

  • Tzitzilonis, C., Eichmann, C., Maslennikov, I., Choe, S., and Riek, R. (2013). Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS One 8, e54378.Google Scholar

  • Viegas, A., Viennet, T., Yu, T.Y., Schumann, F., Bermel, W., Wagner, G., and Etzkorn, M. (2016). UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection. J. Biomol. NMR 64, 9–15.Google Scholar

  • Vilar, M., Charalampopoulos, I., Kenchappa, R.S., Simi, A., Karaca, E., Reversi, A., Choi, S., Bothwell, M., Mingarro, I., Friedman, W.J., Schiavo, G., Bastiaens, P.I., Verveer, P.J., Carter, B.D., and Ibanez, C.F. (2009). Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron 62, 72–83.Google Scholar

  • Vogt, J. and Schulz, G.E. (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7, 1301–1309.Google Scholar

  • Wan, C., Wu, B., Song, Z., Zhang, J., Chu, H., Wang, A., Liu, Q., Shi, Y., Li, G., and Wang, J. (2015). Insights into the molecular recognition of the granuphilin C2A domain with PI(4, 5)P2. Chem. Phys. Lipids 186, 61–67.Google Scholar

  • Wang, X., Mu, Z., Li, Y., Bi, Y., and Wang, Y. (2015). Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein, J. 34, 205–211.Google Scholar

  • Whorton, M.R., Bokoch, M.P., Rasmussen, S.G., Huang, B., Zare, R.N., Kobilka, B., and Sunahara, R.K. (2007). A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687.Google Scholar

  • Wu, Z., Wagner, M.A., Zheng, L., Parks, J.S., Shy, J.M., 3rd, Smith, J.D., Gogonea, V., and Hazen, S.L. (2007). The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol. 14, 861–868.Google Scholar

  • Wu, Z., Gogonea, V., Lee, X., Wagner, M.A., Li, X.M., Huang, Y., Undurti, A., May, R.P., Haertlein, M., Moulin, M., Gutsche, I., Zaccai, G., Didonato, J.A., and Hazen, S.L. (2009). Double superhelix model of high density lipoprotein. J. Biol. Chem. 284, 36605–36619.Google Scholar

  • Yang, J.P., Cirico, T., Katzen, F., Peterson, T.C., and Kudlicki, W. (2011). Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol. 11, 57.Google Scholar

  • Yao, Y., Fujimoto, L.M., Hirshman, N., Bobkov, A.A., Antignani, A., Youle, R.J., and Marassi, F.M. (2015). Conformation of BCL-XL upon membrane integration. J. Mol. Biol. 427, 2262–2270.Google Scholar

  • Yao, Y., Nisan, D., Fujimoto, L.M., Antignani, A., Barnes, A., Tjandra, N., Youle, R.J., and Marassi, F.M. (2016). Characterization of the membrane-inserted C-terminus of cytoprotective BCL-XL. Protein Expr. Purif. 122, 56–63.Google Scholar

  • Yokogawa, M., Kobashigawa, Y., Yoshida, N., Ogura, K., Harada, K., and Inagaki, F. (2012). NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J. Biol. Chem. 287, 34936–34945.Google Scholar

  • Yoshiura, C., Kofuku, Y., Ueda, T., Mase, Y., Yokogawa, M., Osawa, M., Terashima, Y., Matsushima, K., and Shimada, I. (2010). NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers. J. Am. Chem. Soc. 132, 6768–6777.Google Scholar

  • Yu, T.Y., Raschle, T., Hiller, S., and Wagner, G. (2012). Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim. Biophys. Acta 1818, 1562–1569.Google Scholar

  • Zhang, Z., Dai, C., Bai, J., Xu, G., Liu, M., and Li, C. (2014). Ca2+ modulating α-synuclein membrane transient interactions revealed by solution NMR spectroscopy. Biochim. Biophys. Acta 1838, 853–858.Google Scholar

  • Zhang, M., Huang, R., Ackermann, R., Im, S.C., Waskell, L., Schwendeman, A., and Ramamoorthy, A. (2016). Reconstitution of the Cytb5 -CytP450 complex in nanodiscs for structural studies using NMR spectroscopy. Angew. Chem. Int. Ed. 55, 4497–4499.Google Scholar

About the article

aAldino Viegas and Thibault Viennet: These authors contributed equally to this article.

Received: 2016-06-06

Accepted: 2016-07-19

Published Online: 2016-07-23

Published in Print: 2016-12-01

Citation Information: Biological Chemistry, Volume 397, Issue 12, Pages 1335–1354, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0224.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Thibault Viennet, Michael M. Wördehoff, Boran Uluca, Chetan Poojari, Hamed Shaykhalishahi, Dieter Willbold, Birgit Strodel, Henrike Heise, Alexander K. Buell, Wolfgang Hoyer, and Manuel Etzkorn
Communications Biology, 2018, Volume 1, Number 1
Boran Uluca, Thibault Viennet, Dušan Petrović, Hamed Shaykhalishahi, Franziska Weirich, Ayşenur Gönülalan, Birgit Strodel, Manuel Etzkorn, Wolfgang Hoyer, and Henrike Heise
Biophysical Journal, 2018, Volume 114, Number 7, Page 1614
Mariana C. Fiori, Yunjiang Jiang, Wan Zheng, Miguel Anzaldua, Mario J. Borgnia, Guillermo A. Altenberg, and Hongjun Liang
Scientific Reports, 2017, Volume 7, Number 1
Chih-Ta Henry Chien, Lukas R. Helfinger, Mark J. Bostock, Andras Solt, Yi Lei Tan, and Daniel Nietlispach
Journal of the American Chemical Society, 2017
Antoine Henninot, James C. Collins, and John M. Nuss
Journal of Medicinal Chemistry, 2017
Mariana C. Fiori, Yunjiang Jiang, Guillermo A. Altenberg, and Hongjun Liang
Scientific Reports, 2017, Volume 7, Number 1
Justine Wolf, Christopher Aisenbrey, Nicole Harmouche, Jesus Raya, Philippe Bertani, Natalia Voievoda, Regine Süss, and Burkhard Bechinger
Biophysical Journal, 2017
John E. Rouck, John E. Krapf, Jahnabi Roy, Hannah C. Huff, and Aditi Das
FEBS Letters, 2017, Volume 591, Number 14, Page 2057
Piotr J. Mak and Ilia G. Denisov
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2017
Stanley J. Opella and Francesca M. Marassi
Archives of Biochemistry and Biophysics, 2017, Volume 628, Page 92
Ilia G. Denisov and Stephen G. Sligar
Chemical Reviews, 2017, Volume 117, Number 6, Page 4669

Comments (0)

Please log in or register to comment.
Log in