Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 397, Issue 3

Issues

How to build the fastest receptor on earth

Jelena Baranovic
  • Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
  • NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, D-10117, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J.R. PlestedORCID iD: http://orcid.org/0000-0001-6062-0832
Published Online: 2015-08-31 | DOI: https://doi.org/10.1515/hsz-2015-0182

Abstract

In 2014, a slew of structures of glutamate receptors were published, based on crystallography and electron microscopy. Here we review these insights, integrate them with existing knowledge about receptor function and try to understand how the structures relate to the key property of the AMPA receptor – its speed.

Keywords: AMPA receptors; functional properties; structural biology

References

  • Ahmed, A.H., Wang, S., Chuang, H.H., and Oswald, R.E. (2011). Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J. Biol. Chem. 286, 35257–35266.Google Scholar

  • Alle, H., Roth, A., and Geiger, J.R. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science 325, 1405–1408.Google Scholar

  • Armstrong, N. and Gouaux, E. (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181.Google Scholar

  • Armstrong, N., Jasti, J., Beich-Frandsen, M., and Gouaux, E. (2006). Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97.Google Scholar

  • Bartos, M., Vida, I., Frotscher, M., Geiger, J.R., and Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698.Google Scholar

  • Benveniste, M. and Mayer, M.L. (1995). Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. 483, 367–384.Google Scholar

  • Bergles, D.E., Diamond, J.S., and Jahr, C.E. (1999). Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol. 9, 293–298.CrossrefGoogle Scholar

  • Borschel, W.F., Murthy, S.E., Kasperek, E.M., and Popescu, G.K. (2011). NMDA receptor activation requires remodelling of intersubunit contacts within ligand-binding heterodimers. Nat. Commun. 2, 498.CrossrefGoogle Scholar

  • Braitenberg, V. and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity (Berlin: Springer).Google Scholar

  • Carbone, A.L. and Plested, A.J. (2012). Coupled control of desensitization and gating by the ligand binding domain of glutamate receptors. Neuron 74, 845–857.Google Scholar

  • Cha, A. and Bezanilla, F. (1997). Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140.Google Scholar

  • Chen, G.Q., Cui, C., Mayer, M.L., and Gouaux, E. (1999). Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821.Google Scholar

  • Chen, L., Dürr, K.L., and Gouaux, E. (2014). X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. Science 345, 1021–1026.Google Scholar

  • Christie, L.A., Russell, T.A., Xu, J., Wood, L., Shepherd, G.M., and Contractor, A. (2010). AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality. Proc. Natl. Acad. Sci. USA 107, 9412–9417.Google Scholar

  • Cobbs, W.H. and Pugh, E.N. (1987). Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum. J. Physiol. 394, 529–572.Google Scholar

  • Colquhoun, D. (2007). Why the Schild method is better than Schild realised. Trends Pharmacol. Sci. 28, 608–614.Google Scholar

  • Colquhoun, D., Jonas, P., and Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J. Physiol. 458, 261–287.Google Scholar

  • Cull-Candy, S.G. and Usowicz, M.M. (1987). Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528.Google Scholar

  • Diamond, J.S. and Jahr, C.E. (1997). Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687.Google Scholar

  • Dürr, K.L., Chen, L., Stein, R.A., De Zorzi, R., Folea, I.M., Walz, T., Mchaourab, H.S., and Gouaux, E. (2014). Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158, 778–792.Google Scholar

  • Dutta, A., Shrivastava, I.H., Sukumaran, M., Greger, I.H., and Bahar, I. (2012). Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure 20, 1838–1849.CrossrefGoogle Scholar

  • Frauenfelder, H., Sligar, S.G., and Wolynes, P.G. (1991). The energy landscapes and motions of proteins. Science 254, 1598–1603.Google Scholar

  • Gielen, M., Le Goff, A., Stroebel, D., Johnson, J.W., Neyton, J., and Paoletti, P. (2008). Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57, 80–93.Google Scholar

  • Heine, M., Groc, L., Frischknecht, R., Béïque, J.C., Lounis, B., Rumbaugh, G., Huganir, R.L., Cognet, L., and Choquet, D. (2008). Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205.Google Scholar

  • Horning, M.S. and Mayer, M.L. (2004). Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388.Google Scholar

  • Jackson, A.C. and Nicoll, R.A. (2011). The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70, 178–199.Google Scholar

  • Jahr, C.E. and Stevens, C.F. (1987). Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525.Google Scholar

  • Jin, R., Banke, T.G., Mayer, M.L., Traynelis, S.F., and Gouaux, E. (2003). Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810.CrossrefGoogle Scholar

  • Jonas, P. and Sakmann, B. (1992). Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J. Physiol. 455, 143–171.Google Scholar

  • Kaae, B.H., Harpsøe, K., Kastrup, J.S., Sanz, A.C., Pickering, D.S., Metzler, B., Clausen, R.P., Gajhede, M., Sauerberg, P., Liljefors, T., et al. (2007). Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites. Chem. Biol. 14, 1294–1303.CrossrefGoogle Scholar

  • Karakas, E. and Furukawa, H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997.Google Scholar

  • Karakas, E., Regan, M.C., and Furukawa, H. (2015). Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem. Sci. 40, 328–337.Google Scholar

  • Kazi, R., Dai, J., Sweeney, C., Zhou, H.X., and Wollmuth, L.P. (2014). Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents. Nat. Neurosci. 17, 914–922.CrossrefGoogle Scholar

  • Klein, R.M. and Howe, J.R. (2004). Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J. Neurosci. 24, 4941–4951.CrossrefGoogle Scholar

  • Klippenstein, V., Ghisi, V., Wietstruk, M., and Plested, A.J. (2014). Photoinactivation of glutamate receptors by genetically encoded unnatural amino acids. J. Neurosci. 34, 980–991.CrossrefGoogle Scholar

  • Kohda, K., Wang, Y., and Yuzaki, M. (2000). Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat. Neurosci. 3, 315–322.CrossrefGoogle Scholar

  • Koike, M., Tsukada, S., Tsuzuki, K., Kijima, H., and Ozawa, S. (2000). Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J. Neurosci. 20, 2166–2174.Google Scholar

  • Kumar, J. and Mayer, M.L. (2013). Functional insights from glutamate receptor ion channel structures. Annu. Rev. Physiol. 75, 313–337.CrossrefGoogle Scholar

  • Lau, A.Y. and Roux, B. (2007). The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15, 1203–1214.Google Scholar

  • Lau, A.Y. and Roux, B. (2011). The hidden energetics of ligand binding and activation in a glutamate receptor. Nat. Struct. Mol. Biol. 18, 283–287.CrossrefGoogle Scholar

  • Lau, A.Y., Salazar, H., Blachowicz, L., Ghisi, V., Plested, A.J., and Roux, B. (2013). A conformational intermediate in glutamate receptor activation. Neuron 79, 492–503.Google Scholar

  • Lee, C.-H., Lü, W., Michel, J.C., Goehring, A., Du, J., Song, X., and Gouaux, E. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197.Google Scholar

  • Lomash, S., Chittori, S., Brown, P., and Mayer, M.L. (2013). Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels. Structure 21, 414–425.Google Scholar

  • Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, T.S., Thian, F.S., Hubbell, W.L., et al. (2015). Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111.Google Scholar

  • Meyerson, J.R., Kumar, J., Chittori, S., Rao, P., Pierson, J., Bartesaghi, A., Mayer, M.L., and Subramaniam, S. (2014). Structural mechanism of glutamate receptor activation and desensitization. Nature 514, 328–334.Google Scholar

  • Miranda, P., Contreras, J.E., Plested, A.J., Sigworth, F.J., Holmgren, M., and Giraldez, T. (2013). State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels. Proc. Natl. Acad. Sci. USA 110, 5217–5222.Google Scholar

  • Partin, K.M., Patneau, D.K., and Mayer, M.L. (1994). Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol. Pharmacol. 46, 129–138.Google Scholar

  • Patneau, D.K., Vyklicky, L., and Mayer, M.L. (1993). Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509.Google Scholar

  • Plested, A.J. and Mayer, M.L. (2009). AMPA receptor ligand binding domain mobility revealed by functional cross linking. J. Neurosci. 29, 11912–11923.CrossrefGoogle Scholar

  • Poon, K., Ahmed, A.H., Nowak, L.M., and Oswald, R.E. (2011). Mechanisms of modal activation of GluA3 receptors. Mol. Pharmacol. 80, 49–59.CrossrefGoogle Scholar

  • Robert, A. and Howe, J.R. (2003). How AMPA receptor desensitization depends on receptor occupancy. J. Neurosci. 23, 847–858.Google Scholar

  • Rosenmund, C., Stern-Bach, Y., and Stevens, C.F. (1998). The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599.Google Scholar

  • Rossi, D.J., Oshima, T., and Attwell, D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321.Google Scholar

  • Rossmann, M., Sukumaran, M., Penn, A.C., Veprintsev, D.B., Babu, M.M., and Greger, I.H. (2011). Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 30, 959–971.CrossrefGoogle Scholar

  • Saviane, C. and Silver, R.A. (2006). Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987.Google Scholar

  • Schild, H.O. (1947). pA, a new scale for the measurement of drug antagonism. Br. J. Pharmacol. Chemother. 2, 189–206.CrossrefGoogle Scholar

  • Smith, T.C., Wang, L.Y., and Howe, J.R. (2000). Heterogeneous conductance levels of native AMPA receptors. J. Neurosci. 20, 2073–2085.Google Scholar

  • Sobolevsky, A.I., Rosconi, M.P., and Gouaux, E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756.Google Scholar

  • Sridevi, K., Lakshmikanth, G.S., Krishnamoorthy, G., and Udgaonkar, J.B. (2004). Increasing stability reduces conformational heterogeneity in a protein folding intermediate ensemble. J. Mol. Biol. 337, 699–711.Google Scholar

  • Sun, Y., Olson, R., Horning, M., Armstrong, N., Mayer, M., and Gouaux, E. (2002). Mechanism of glutamate receptor desensitization. Nature 417, 245–253.Google Scholar

  • Suzuki, Y., Goetze, T.A., Stroebel, D., Balasuriya, D., Yoshimura, S.H., Henderson, R.M., Paoletti, P., Takeyasu, K., and Edwardson, J.M. (2013). Visualization of structural changes accompanying activation of N-methyl-D-aspartate (NMDA) receptors using fast-scan atomic force microscopy imaging. J. Biol. Chem. 288, 778–784.Google Scholar

  • Swanson, G.T., Kamboj, S.K., and Cull-Candy, S.G. (1997). Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69.Google Scholar

  • Taschenberger, H. and von Gersdorff, H. (2000). Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173.Google Scholar

  • Taverna, F., Xiong, Z.G., Brandes, L., Roder, J.C., Salter, M.W., and MacDonald, J.F. (2000). The Lurcher mutation of an a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit enhances potency of glutamate and converts an antagonist to an agonist. J. Biol. Chem. 275, 8475–8479.Google Scholar

  • The PyMOL Molecular Graphics System. (2010). Version (1).7. Schrödinger, LLC.Google Scholar

  • Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496.CrossrefGoogle Scholar

  • Unwin, N. and Fujiyoshi, Y. (2012). Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422, 617–634.Google Scholar

  • Walker, C.S., Jensen, S., Ellison, M., Matta, J.A., Lee, W.Y., Imperial, J.S., Duclos, N., Brockie, P.J., Madsen, D.M., Isaac, J.T., et al. (2009). A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr. Biol. 19, 900–908.CrossrefGoogle Scholar

  • Yang, Y.M., Aitoubah, J., Lauer, A.M., Nuriya, M., Takamiya, K., Jia, Z., May, B.J., Huganir, R.L., and Wang, L.Y. (2011). GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. J. Physiol. 589, 4209–4227.Google Scholar

  • Yelshanskaya, M.V., Li, M., and Sobolevsky, A.I. (2014). Structure of an agonist-bound ionotropic glutamate receptor. Science 345, 1070–1074.Google Scholar

  • Zhao, H., Berger, A.J., Brown, P.H., Kumar, J., Balbo, A., May, C.A., Casillas, E., Laue, T.M., Patterson, G.H., Mayer, M.L., et al. (2012). Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. J. Gen. Physiol. 139, 371–388.Google Scholar

  • Zhu, S., Stroebel, D., Yao, C.A., Taly, A., and Paoletti, P. (2013). Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain. Nat. Struct. Mol. Biol. 20, 477–485.CrossrefGoogle Scholar

About the article

Corresponding author: Andrew J.R. Plested, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany; and NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, D-10117, Berlin, Germany, e-mail: .


Received: 2015-05-23

Accepted: 2015-08-27

Published Online: 2015-08-31

Published in Print: 2016-03-01


Citation Information: Biological Chemistry, Volume 397, Issue 3, Pages 195–205, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0182.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Viktoria Klippenstein, Laetitia Mony, and Pierre Paoletti
Trends in Biochemical Sciences, 2018
[2]
Alvin Yu, Héctor Salazar, Andrew J.R. Plested, and Albert Y. Lau
Neuron, 2017
[3]
Linda G. Zachariassen, Ljudmila Katchan, Anna G. Jensen, Darryl S. Pickering, Andrew J. R. Plested, and Anders S. Kristensen
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 27, Page E3950

Comments (0)

Please log in or register to comment.
Log in