Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 397, Issue 3

Issues

Role of chitinase-like proteins in cancer

Julia Kzhyshkowska
  • Corresponding author
  • Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
  • Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia
  • German Red Cross Blood Service Baden-Württemberg – Hessen, Friedrich-Ebert Strasse 107, D-68167 Mannheim, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shuiping Yin
  • Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tengfei Liu
  • Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Riabov
  • Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
  • Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irina Mitrofanova
  • Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-04 | DOI: https://doi.org/10.1515/hsz-2015-0269

Abstract

Chitinase-like proteins (CLPs) are lectins combining properties of cytokines and growth factors. Human CLPs include YKL-40, YKL-39 and SI-CLP that are secreted by cancer cells, macrophages, neutrophils, synoviocytes, chondrocytes and other cells. The best investigated CLP in cancer is YKL-40. Serum and plasma levels of YKL-40 correlate with poor prognosis in breast, lung, prostate, liver, bladder, colon and other types of cancers. In combination with other circulating factors YKL-40 can be used as a predictive biomarker of cancer outcome. In experimental models YKL-40 supports tumor initiation through binding to RAGE, and is able to induce cancer cell proliferation via ERK1/2-MAPK pathway. YKL-40 supports tumor angiogenesis by interaction with syndecan-1 on endothelial cells and metastatic spread by stimulating production of pro-inflammatory and pro-invasive factors MMP9, CCL2 and CXCL2. CLPs induce production of pro- and anti-inflammatory cytokines and chemokines, and are potential modulators of inflammatory tumor microenvironment. Targeting YKL-40 using neutralizing antibodies exerts anti-cancer effect in preclinical animal models. Multifunctional role of CLPs in regulation of inflammation and intratumoral processes makes them attractive candidates for tumor therapy and immunomodulation. In this review we comprehensively analyze recent data about expression pattern, and involvement of human CLPs in cancer.

Keywords: angiogenesis; lectin; metastasis; SI-CLP; YKL-39; YKL-40

References

  • Akiyama, Y., Ashizawa, T., Komiyama, M., Miyata, H., Oshita, C., Omiya, M., Iizuka, A., Kume, A., Sugino, T., Hayashi, N., et al. (2014). YKL-40 downregulation is a key factor to overcome temozolomide resistance in a glioblastoma cell line. Oncol. Rep. 32, 159–166.Google Scholar

  • Areshkov, P.A. and Kavsan, V.M. (2010). Chitinase 3-like protein 2 (CHI3L2, YKL-39) activates phosphorylation of extracellular signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells. Tsitol. Genet. 44, 3–9.Google Scholar

  • Areshkov, P.O., Avdieiev, S.S., Balynska, O.V., Leroith, D., and Kavsan, V.M. (2012). Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. Int. J. Biol. Sci. 8, 39–48.Google Scholar

  • Balkwill, F.R., Capasso, M., and Hagemann, T. (2012). The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596.Google Scholar

  • Barbouri, D., Afratis, N., Gialeli, C., Vynios, D.H., Theocharis, A.D., and Karamanos, N.K. (2014). Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol. 4, 4.Google Scholar

  • Barderas, R., Bartolome, R.A., Fernandez-Acenero, M.J., Torres, S., and Casal, J.I. (2012). High expression of IL-13 receptor alpha2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res. 72, 2780–2790.CrossrefGoogle Scholar

  • Bernardi, D., Podswiadek, M., Zaninotto, M., Punzi, L., and Plebani, M. (2003). YKL-40 as a marker of joint involvement in inflammatory bowel disease. Clin. Chem. 49, 1685–1688.CrossrefGoogle Scholar

  • Bhardwaj, R., Yester, J.W., Singh, S.K., Biswas, D.D., Surace, M.J., Waters, M.R., Hauser, K.F., Yao, Z., Boyce, B.F., and Kordula, T. (2015). RelB/p50 complexes regulate cytokine-induced YKL-40 expression. J. Immunol. 194, 2862–2870.Google Scholar

  • Bigg, H.F., Wait, R., Rowan, A.D., and Cawston, T.E. (2006). The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J. Biol. Chem. 281, 21082–21095.Google Scholar

  • Biggar, R.J., Johansen, J.S., Smedby, K.E., Rostgaard, K., Chang, E.T., Adami, H.O., Glimelius, B., Molin, D., Hamilton-Dutoit, S., Melbye, M. et al. (2008). Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin. Cancer Res. 14, 6974–6978.Google Scholar

  • Bonneh-Barkay, D., Bissel, S.J., Kofler, J., Starkey, A., Wang, G., and Wiley, C.A. (2012). Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol. 22, 530–546.CrossrefGoogle Scholar

  • Boot, R.G., Blommaart, E.F., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A., and Aerts, J.M. (2001). Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 276, 6770–6778.Google Scholar

  • Brocheriou, I., Maouche, S., Durand, H., Braunersreuther, V., Le Naour, G., Gratchev, A., Koskas, F., Mach, F., Kzhyshkowska, J., and Ninio, E. (2011). Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis 214, 316–324.Google Scholar

  • Chang, N.C., Hung, S.I., Hwa, K.Y., Kato, I., Chen, J.E., Liu, C.H., and Chang, A.C. (2001). A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 276, 17497–17506.Google Scholar

  • Chen, C.C., Pekow, J., Llado, V., Kanneganti, M., Lau, C.W., Mizoguchi, A., Mino-Kenudson, M., Bissonnette, M., and Mizoguchi, E. (2011). Chitinase 3-like-1 expression in colonic epithelial cells as a potentially novel marker for colitis-associated neoplasia. Am. J. Pathol. 179, 1494–1503.Google Scholar

  • Chudecka-Glaz, A., Gorski, B., Zielinska, D., Blogowski, W., Wojciechowska, I., Bedner, R., and Rzepka-Gorska, I. (2009). Serum YKL-40 levels in patients with ovarian cancer and women with BRCA1 gene mutation–comparison to CA 125 antigen. Eur. J. Gynaecol. Oncol. 30, 668–671.Google Scholar

  • Cintin, C., Johansen, J.S., Christensen, I.J., Price, P.A., Sorensen, S., and Nielsen, H.J. (1999). Serum YKL-40 and colorectal cancer. Br. J. Cancer 79, 1494–1499.CrossrefGoogle Scholar

  • Colton, C.A., Mott, R.T., Sharpe, H., Xu, Q., Van Nostrand, W.E., and Vitek, M.P. (2006). Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation 3, 27.CrossrefGoogle Scholar

  • Cuddapah, V.A., Robel, S., Watkins, S., and Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15, 455–465.CrossrefGoogle Scholar

  • Di Rosa, M., Tibullo, D., Malaguarnera, M., Tuttobene, M., and Malaguarnera, L. (2013). Comparison of YKL-39 and CHIT-1 expression during macrophages differentiation and polarization. Modern Research in Inflammation 2, 82–89.Google Scholar

  • Diaz-Lagares, A., Alegre, E., Arroyo, A., Gonzalez-Cao, M., Zudaire, M.E., Viteri, S., Martin-Algarra, S., and Gonzalez, A. (2011). Evaluation of multiple serum markers in advanced melanoma. Tumour Biol. 32, 1155–1161.CrossrefGoogle Scholar

  • Diefenbach, C.S., Shah, Z., Iasonos, A., Barakat, R.R., Levine, D.A., Aghajanian, C., Sabbatini, P., Hensley, M.L., Konner, J., Tew, W., et al. (2007). Preoperative serum YKL-40 is a marker for detection and prognosis of endometrial cancer. Gynecol. Oncol. 104, 435–442.CrossrefGoogle Scholar

  • Egberts, F., Kotthoff, E.M., Gerdes, S., Egberts, J.H., Weichenthal, M., and Hauschild, A. (2012). Comparative study of YKL-40, S-100B and LDH as monitoring tools for Stage IV melanoma. Eur. J. Cancer 48, 695–702.CrossrefGoogle Scholar

  • Egeblad, M., Nakasone, E.S., and Werb, Z. (2010). Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901.CrossrefGoogle Scholar

  • Elias, J.A., Homer, R.J., Hamid, Q., and Lee, C.G. (2005). Chitinases and chitinase-like proteins in T H 2 inflammation and asthma. J. Allergy Clin. Immunol. 116, 497–500.Google Scholar

  • Erzin, Y., Uzun, H., Karatas, A., and Celik, A.F. (2008). Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn’s disease. J. Gastroenterol. Hepatol. 23, e357–362.CrossrefGoogle Scholar

  • Faibish, M., Francescone, R., Bentley, B., Yan, W., and Shao, R. (2011). A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol. Cancer Ther. 10, 742–751.CrossrefGoogle Scholar

  • Feodorova, Y., Tashkova, D., Simitchiev, K., Todorov, A., Kostov, G., Dimov, R., and Sarafian, V. (2015). Dependence of YKL-40 mRNA tissue levels on KRAS mutation status in colorectal cancer. IJSM 1, 48–52.CrossrefGoogle Scholar

  • Francescone, R.A., Scully, S., Faibish, M., Taylor, S.L., Oh, D., Moral, L., Yan, W., Bentley, B., and Shao, R. (2011). Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem. 286, 15332–15343.Google Scholar

  • Francescone, R., Ngernyuang, N., Yan, W., Bentley, B., and Shao, R. (2014). Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis. Oncogene 33, 2110–2122.CrossrefGoogle Scholar

  • Fujisawa, T., Joshi, B.H., and Puri, R.K. (2012). IL-13 regulates cancer invasion and metastasis through IL-13Ralpha2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int. J. Cancer 131, 344–356.Google Scholar

  • Fusetti, F., Pijning, T., Kalk, K.H., Bos, E., and Dijkstra, B.W. (2003). Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 278, 37753–37760.Google Scholar

  • Gara, S.K., Wang, Y., Patel, D., Liu-Chittenden, Y., Jain, M., Boufraqech, M., Zhang, L., Meltzer, P. S. and Kebebew, E. (2015). Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples. Nuc. Acids Res. 43, 9327–9339.CrossrefGoogle Scholar

  • Goerdt, S., Walsh, L.J., Murphy, G.F., and Pober, J.S. (1991). Identification of a novel high molecular weight protein preferentially expressed by sinusoidal endothelial cells in normal human tissues. J. Cell Biol. 113, 1425–1437.Google Scholar

  • Golestaneh, N. and Mishra, B. (2005). TGF-β, neuronal stem cells and glioblastoma. Oncogene 24, 5722–5730.CrossrefGoogle Scholar

  • Gratchev, A., Schmuttermaier, C., Mamidi, S., Gooi, L., Goerdt, S., and Kzhyshkowska, J. (2008). Expression of osteoarthritis marker YKL-39 is stimulated by transforming growth factor b (TGF-b) and IL-4 in differentiating macrophages. Biomark. Insights 3, 39–44.Google Scholar

  • Hakala, B.E., White, C., and Recklies, A.D. (1993). Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J. Biol. Chem. 268, 25803–25810.Google Scholar

  • He, C.H., Lee, C.G., Dela Cruz, C.S., Lee, C.M., Zhou, Y., Ahangari, F., Ma, B., Herzog, E.L., Rosenberg, S.A., Li, Y., et al. (2013). Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor a2. Cell Rep. 4, 830–841.Google Scholar

  • Henrissat, B. and Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.CrossrefGoogle Scholar

  • Hogdall, E.V., Ringsholt, M., Hogdall, C.K., Christensen, I.J., Johansen, J.S., Kjaer, S.K., Blaakaer, J., Ostenfeld-Moller, L., Price, P.A., and Christensen, L.H. (2009). YKL-40 tissue expression and plasma levels in patients with ovarian cancer. BMC Cancer 9, 8.Google Scholar

  • Hollak, C.E., van Weely, S., van Oers, M.H., and Aerts, J.M. (1994). Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Invest. 93, 1288–1292.CrossrefGoogle Scholar

  • Hormigo, A., Gu, B., Karimi, S., Riedel, E., Panageas, K.S., Edgar, M.A., Tanwar, M.K., Rao, J.S., Fleisher, M., DeAngelis, L.M., and Holland, E.C. (2006). YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin. Cancer. Res. 12, 5698–5704.CrossrefGoogle Scholar

  • Hu, B., Trinh, K., Figueira, W.F., and Price, P.A. (1996). Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J. Biol. Chem. 271, 19415–19420.Google Scholar

  • Iwamoto, F.M. and Hormigo, A. (2014). Unveiling YKL-40, from serum marker to target therapy in glioblastoma. Front Oncol. 4, 90.Google Scholar

  • Iwamoto, F.M., Hottinger, A.F., Karimi, S., Riedel, E., Dantis, J., Jahdi, M., Panageas, K.S., Lassman, A.B., Abrey, L.E., Fleisher, M., et al. (2011). Serum YKL-40 is a marker of prognosis and disease status in high-grade gliomas. Neuro. Oncol. 13, 1244–1251.CrossrefGoogle Scholar

  • Jensen, B.V., Johansen, J.S., and Price, P.A. (2003). High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin. Cancer. Res. 9, 4423–4434.Google Scholar

  • Jin, H.M., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Kirkpatrick, R.B., and Rosenberg, M. (1998). Genetic characterization of the murine Ym1 gene and identification of a cluster of highly homologous genes. Genomics 54, 316–322.Google Scholar

  • Johansen, J.S., Williamson, M.K., Rice, J.S., and Price, P.A. (1992). Identification of proteins secreted by human osteoblastic cells in culture. J. Bone Miner. Res. 7, 501–512.CrossrefGoogle Scholar

  • Johansen, J.S., Christensen, I.J., Riisbro, R., Greenall, M., Han, C., Price, P.A., Smith, K., Brunner, N., and Harris, A.L. (2003). High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res. Treat. 80, 15–21.CrossrefGoogle Scholar

  • Johansen, J.S., Milman, N., Hansen, M., Garbarsch, C., Price, P.A., and Graudal, N. (2005). Increased serum YKL-40 in patients with pulmonary sarcoidosis–a potential marker of disease activity? Respir. Med. 99, 396–402.CrossrefGoogle Scholar

  • Johansen, J.S., Brasso, K., Iversen, P., Teisner, B., Garnero, P., Price, P.A., and Christensen, I.J. (2007). Changes of biochemical markers of bone turnover and YKL-40 following hormonal treatment for metastatic prostate cancer are related to survival. Clin. Cancer Res. 13, 3244–3249.CrossrefGoogle Scholar

  • Johansen, J.S., Schultz, N.A., and Jensen, B.V. (2009). Plasma YKL-40: a potential new cancer biomarker? Future Oncol. 5, 1065–1082.CrossrefGoogle Scholar

  • Johansen, J.S., Bojesen, S.E., Tybjaerg-Hansen, A., Mylin, A.K., Price, P.A., and Nordestgaard, B.G. (2010). Plasma YKL-40 and total and disease-specific mortality in the general population. Clin. Chem. 56, 1580–1591.CrossrefGoogle Scholar

  • Johansen, J.S., Christensen, I.J., Jorgensen, L.N., Olsen, J., Rahr, H.B., Nielsen, K.T., Laurberg, S., Brunner, N., and Nielsen, H. J. (2015). Serum YKL-40 in risk assessment for colorectal cancer: a prospective study of 4,496 subjects at risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 24, 621–626.Google Scholar

  • Joshi, A. and Cao, D. (2009). TGF-b signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci. (Landmark edition) 15, 180–194.CrossrefGoogle Scholar

  • Junker, N., Johansen, J.S., Andersen, C.B., and Kristjansen, P.E. (2005). Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 48, 223–231.CrossrefGoogle Scholar

  • Kang, E.J., Jung, H., Woo, O.H., Park, K.H., Woo, S.U., Yang, D.S., Kim, A.R., Lee, J.B., Kim, Y.H., Kim, J.S., et al. (2014). YKL-40 expression could be a poor prognostic marker in the breast cancer tissue. Tumour Biol. 35, 277–286.CrossrefGoogle Scholar

  • Karikoski, M., Marttila-Ichihara, F., Elima, K., Rantakari, P., Hollmen, M., Kelkka, T., Gerke, H., Huovinen, V., Irjala, H., Holmdahl, R., et al. (2014). Clever-1/stabilin-1 controls cancer growth and metastasis. Clin. Cancer Res. 20, 6452–6464.CrossrefGoogle Scholar

  • Kavsan, V., Dmitrenko, V., Boyko, O., Filonenko, V., Avdeev, S., Areshkov, P., Marusyk, A., Malisheva, T., Rozumenko, V., and Zozulya, Y. (2008). Overexpression of YKL-39 gene in glial brain tumors. Scholarly Research Exchange 2008.Google Scholar

  • Kawada, M., Seno, H., Kanda, K., Nakanishi, Y., Akitake, R., Komekado, H., Kawada, K., Sakai, Y., Mizoguchi, E., and Chiba, T. (2012). Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 31, 3111–3123.CrossrefGoogle Scholar

  • Kjaergaard, A.D., Bojesen, S.E., Johansen, J.S., and Nordestgaard, B.G. (2010). Elevated plasma YKL-40 levels and ischemic stroke in the general population. Ann. Neurol. 68, 672–680.CrossrefGoogle Scholar

  • Kjaergaard, A.D., Nordestgaard, B.G., Johansen, J.S., and Bojesen, S.E. (2015). Observational and genetic plasma YKL-40 and cancer in 96,099 individuals from the general population. Int. J. Cancer 137, 2696–2704.Google Scholar

  • Knorr, T., Obermayr, F., Bartnik, E., Zien, A., and Aigner, T. (2003). YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes. Ann. Rheum. Dis. 62, 995–998.Google Scholar

  • Ku, B.M., Lee, Y.K., Ryu, J., Jeong, J.Y., Choi, J., Eun, K.M., Shin, H.Y., Kim, D.G., Hwang, E.M., Yoo, J.C., et al. (2011). CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int. J. Cancer 128, 1316–1326.Google Scholar

  • Kzhyshkowska, J., Gratchev, A., Martens, J.H., Pervushina, O., Mamidi, S., Johansson, S., Schledzewski, K., Hansen, B., He, X., Tang, J., et al. (2004). Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. J. Leukoc. Biol. 76, 1151–1161.Google Scholar

  • Kzhyshkowska, J., Mamidi, S., Gratchev, A., Kremmer, E., Schmuttermaier, C., Krusell, L., Haus, G., Utikal, J., Schledzewski, K., Scholtze, J., et al. (2006). Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood 107, 3221–3228.Google Scholar

  • Kzhyshkowska, J., Gratchev, A., and Goerdt, S. (2007). Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark. Insights 2, 128–146.Google Scholar

  • Kzhyshkowska, J., Gratchev, A., Schmuttermaier, C., Brundiers, H., Krusell, L., Mamidi, S., Zhang, J., Workman, G., Sage, E. H., Anderle, C., et al. (2008). Alternatively activated macrophages regulate extracellular levels of the hormone placental lactogen via receptor-mediated uptake and transcytosis. J. Immunol. 180, 3028–3037.CrossrefGoogle Scholar

  • Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C., and Hermoso, M. A. (2014). Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185. doi: 10.1155/2014/149185.CrossrefGoogle Scholar

  • Lasek, W., Zagozdzon, R., and Jakobisiak, M. (2014). Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63, 419–435.CrossrefGoogle Scholar

  • Lee, C.G., Da Silva, C.A., Dela Cruz, C.S., Ahangari, F., Ma, B., Kang, M.J., He, C.H., Takyar, S., and Elias, J.A. (2011). Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 73, 479–501.CrossrefGoogle Scholar

  • Leivonen, M., Lundin, J., Nordling, S., von Boguslawski, K., and Haglund, C. (2004). Prognostic value of syndecan-1 expression in breast cancer. Oncology 67, 11–18.Google Scholar

  • Libreros, S. and Iragavarapu-Charyulu, V. (2015). YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J. Leukoc. Biol. 98, 931–936.Google Scholar

  • Libreros, S., Garcia-Areas, R., Shibata, Y., Carrio, R., Torroella-Kouri, M., and Iragavarapu-Charyulu, V. (2012). Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int. J. Cancer 131, 377–386.Google Scholar

  • Libreros, S., Garcia-Areas, R., Keating, P., Carrio, R., and Iragavarapu-Charyulu, V.L. (2013). Exploring the role of CHI3L1 in “pre-metastatic” lungs of mammary tumor-bearing mice. Front Physiol. 4, 392.Google Scholar

  • Libreros, S., Garcia-Areas, R., Keating, P., Gazaniga, N., Robinson, P., Humbles, A., and Iragavarapu-Charyulu, V.L. (2015). Allergen induced pulmonary inflammation enhances mammary tumor growth and metastasis: role of CHI3L1. J Leukoc Biol. 97, 929–940.Google Scholar

  • Low, D., Subramaniam, R., Lin, L., Aomatsu, T., Mizoguchi, A., Ng, A., DeGruttola, A.K., Lee, C.G., Elias, J.A., Andoh, A., et al. (2015). Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget 6, 36535–36550.Google Scholar

  • Lu, K.V., Jong, K.A., Rajasekaran, A.K., Cloughesy, T.F., and Mischel, P.S. (2004). Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest. 84, 8–20.CrossrefGoogle Scholar

  • Ma, B., Herzog, E.L., Lee, C.G., Peng, X., Lee, C.M., Chen, X., Rockwell, S., Koo, J.S., Kluger, H., Herbst, R.S., et al. (2015). Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis. Cancer Res. 75, 487–496.CrossrefGoogle Scholar

  • Maeda, T., Desouky, J., and Friedl, A. (2006). Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25, 1408–1412.CrossrefGoogle Scholar

  • Malik, P., Chaudhry, N., Mittal, R., and Mukherjee, T.K. (2015). Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim. Biophys. Acta 1850, 1898–1904.Google Scholar

  • Malinda, K.M., Ponce, L., Kleinman, H.K., Shackelton, L.M., and Millis, A.J. (1999). Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp. Cell Res. 250, 168–173.CrossrefGoogle Scholar

  • Martens, J.H., Kzhyshkowska, J., Falkowski-Hansen, M., Schledzewski, K., Gratchev, A., Mansmann, U., Schmuttermaier, C., Dippel, E., Koenen, W., Riedel, F., et al. (2006). Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. J. Pathol. 208, 574–589.Google Scholar

  • Meng, G., Zhao, Y., Bai, X., Liu, Y., Green, T.J., Luo, M., and Zheng, X. (2010). Structure of human stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity. J. Biol. Chem. 285, 39898–39904.Google Scholar

  • Miyatake, K., Tsuji, K., Yamaga, M., Yamada, J., Matsukura, Y., Abula, K., Sekiya, I., and Muneta, T. (2013). Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells. Biochem. Biophys. Res. Commun. 431, 52–57.Google Scholar

  • Mosig, S., Rennert, K., Krause, S., Kzhyshkowska, J., Neunubel, K., Heller, R., and Funke, H. (2009). Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 23, 866–874.CrossrefGoogle Scholar

  • Nielsen, A.R., Erikstrup, C., Johansen, J.S., Fischer, C.P., Plomgaard, P., Krogh-Madsen, R., Taudorf, S., Lindegaard, B., and Pedersen, B.K. (2008). Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57, 3078–3082.CrossrefGoogle Scholar

  • Nishikawa, K.C. and Millis, A.J. (2003). gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp. Cell Res. 287, 79–87.Google Scholar

  • Otsuka, K., Matsumoto, H., Niimi, A., Muro, S., Ito, I., Takeda, T., Terada, K., Yamaguchi, M., Matsuoka, H., Jinnai, M., et al. (2012). Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respiration 83, 507–519.CrossrefGoogle Scholar

  • Otterdal, K., Janardhanan, J., Astrup, E., Ueland, T., Prakash, J.A., Lekva, T., Abraham, O.C., Thomas, K., Damas, J.K., Mathews, P., et al. (2014). Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus. J. Infect. 69, 462–469.CrossrefGoogle Scholar

  • Ozdemir, E., Cicek, T., and Kaya, M.O. (2012). Association of serum YKL-40 level with tumor burden and metastatic stage of prostate cancer. Urol. J. 9, 568–573.Google Scholar

  • Park, J.A., Drazen, J.M., and Tschumperlin, D.J. (2010). The chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress. J. Biol. Chem. 285, 29817–29825.Google Scholar

  • Pelloski, C.E., Mahajan, A., Maor, M., Chang, E.L., Woo, S., Gilbert, M., Colman, H., Yang, H., Ledoux, A., Blair, H., et al. (2005). YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin. Cancer Res. 11, 3326–3334.CrossrefGoogle Scholar

  • Petersson, M., Bucht, E., Granberg, B., and Stark, A. (2006). Effects of arginine-vasopressin and parathyroid hormone-related protein (1-34) on cell proliferation and production of YKL-40 in cultured chondrocytes from patients with rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage 14, 652–659.Google Scholar

  • Qian, H., Johansson, S., McCourt, P., Smedsrod, B., Ekblom, M., and Johansson, S. (2009). Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochem. Biophys. Res. Commun. 390, 883–886.Google Scholar

  • Qian, B.Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L.R., Kaiser, E.A., Snyder, L.A., and Pollard, J.W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225.Google Scholar

  • Qureshi, A.M., Hannigan, A., Campbell, D., Nixon, C., and Wilson, J.B. (2011). Chitinase-like proteins are autoantigens in a model of inflammation-promoted incipient neoplasia. Genes Cancer 2, 74–87.Google Scholar

  • Ranok, A., Wongsantichon, J., Robinson, R.C., and Suginta, W. (2015). Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). J. Biol. Chem. 290, 2617–2629.Google Scholar

  • Rathcke, C.N., Persson, F., Tarnow, L., Rossing, P., and Vestergaard, H. (2009). YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care 32, 323–328.CrossrefGoogle Scholar

  • Renkema, G.H., Boot, R.G., Au, F.L., Donker-Koopman, W.E., Strijland, A., Muijsers, A.O., Hrebicek, M., and Aerts, J.M. (1998). Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 251, 504–509.Google Scholar

  • Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A., and Kzhyshkowska, J. (2014). Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5, 75.Google Scholar

  • Roslind, A., Johansen, J.S., Christensen, I.J., Kiss, K., Balslev, E., Nielsen, D.L., Bentzen, J., Price, P.A., and Andersen, E. (2008a). High serum levels of YKL-40 in patients with squamous cell carcinoma of the head and neck are associated with short survival. Int. J. Cancer 122, 857–863.Google Scholar

  • Roslind, A., Knoop, A.S., Jensen, M.B., Johansen, J.S., Nielsen, D.L., Price, P.A., and Balslev, E. (2008b). YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res. Treat. 112, 275–285.CrossrefGoogle Scholar

  • Saidi, A., Javerzat, S., Bellahcene, A., De Vos, J., Bello, L., Castronovo, V., Deprez, M., Loiseau, H., Bikfalvi, A., and Hagedorn, M. (2008). Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int. J. Cancer 122, 2187–2198.Google Scholar

  • Salamon, J., Hoffmann, T., Elies, E., Peldschus, K., Johansen, J.S., Luers, G., Schumacher, U., and Wicklein, D. (2014). Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice. PLoS One 9, e95822.Google Scholar

  • Schimpl, M., Rush, C.L., Betou, M., Eggleston, I.M., Recklies, A.D., and van Aalten, D.M. (2012). Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem. J. 446, 149–157.Google Scholar

  • Schledzewski, K., Falkowski, M., Moldenhauer, G., Metharom, P., Kzhyshkowska, J., Ganss, R., Demory, A., Falkowska-Hansen, B., Kurzen, H., Ugurel, S., et al. (2006). Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J. Pathol. 209, 67–77.Google Scholar

  • Schmidt, H., Johansen, J.S., Gehl, J., Geertsen, P.F., Fode, K., and von der Maase, H. (2006a). Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma. Cancer 106, 1130–1139.CrossrefGoogle Scholar

  • Schmidt, H., Johansen, J.S., Sjoegren, P., Christensen, I.J., Sorensen, B.S., Fode, K., Larsen, J., and von der Maase, H. (2006b). Serum YKL-40 predicts relapse-free and overall survival in patients with American Joint Committee on Cancer stage I and II melanoma. J. Clin. Oncol. 24, 798–804.CrossrefGoogle Scholar

  • Schonhaar, K., Schledzewski, K., Michel, J., Dollt, C., Gkaniatsou, C., Geraud, C., Kzhyshkowska, J., Goerdt, S., and Schmieder, A. (2014). Expression of stabilin-1 in M2 macrophages in human granulomatous disease and melanocytic lesions. Int. J. Clin. Exp. Pathol. 7, 1625–1634.Google Scholar

  • Schultz, N.A., Christensen, I.J., Werner, J., Giese, N., Jensen, B.V., Larsen, O., Bjerregaard, J.K., Pfeiffer, P., Calatayud, D., Nielsen, S. E., et al. (2013). Diagnostic and prognostic impact of circulating YKL-40, IL-6, and CA 19.9 in patients with pancreatic cancer. PLoS One 8, e67059.Google Scholar

  • Sengupta, S., Thaci, B., Crawford, A.C., and Sampath, P. (2014). Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. Biomed. Res. Int. 2014, 952128. doi: 10.1155/2014/952128.CrossrefGoogle Scholar

  • Shackelton, L.M., Mann, D.M., and Millis, A.J. (1995). Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J. Biol. Chem. 270, 13076–13083.Google Scholar

  • Shao, R. (2013). YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 4, 122.Google Scholar

  • Shao, R., Hamel, K., Petersen, L., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2009). YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28, 4456–4468.CrossrefGoogle Scholar

  • Shao, R., Cao, Q.J., Arenas, R.B., Bigelow, C., Bentley, B., and Yan, W. (2011). Breast cancer expression of YKL-40 correlates with tumour grade, poor differentiation, and other cancer markers. Br. J. Cancer 105, 1203–1209.CrossrefGoogle Scholar

  • Shao, R., Francescone, R., Ngernyuang, N., Bentley, B., Taylor, S.L., Moral, L., and Yan, W. (2014). Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis 35, 373–382.CrossrefGoogle Scholar

  • Singh, S.K., Bhardwaj, R., Wilczynska, K.M., Dumur, C.I., and Kordula, T. (2011). A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glioma migration through the secreted glycoprotein YKL-40. J. Biol. Chem. 286, 39893–39903.Google Scholar

  • Sohn, M.H., Kang, M.J., Matsuura, H., Bhandari, V., Chen, N.Y., Lee, C.G., and Elias, J.A. (2010). The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. Am. J. Respir. Crit. Care Med. 182, 918–928.Google Scholar

  • St-Jacques, S. and Bleau, G. (1988). Monoclonal antibodies specific for an oviductal component associated with the hamster zona pellucida. J. Reprod. Immunol. 12, 247–261.CrossrefGoogle Scholar

  • Steck, E., Breit, S., Breusch, S.J., Axt, M., and Richter, W. (2002). Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage. Biochem. Biophys. Res. Commun. 299, 109–115.Google Scholar

  • Tschirdewahn, S., Reis, H., Niedworok, C., Nyirady, P., Szendroi, A., Schmid, K.W., Shariat, S.F., Kramer, G., vom Dorp, F., Rubben, H., et al. (2014). Prognostic effect of serum and tissue YKL-40 levels in bladder cancer. Urol. Oncol. 32, 663–669.CrossrefGoogle Scholar

  • Volck, B., Price, P.A., Johansen, J.S., Sorensen, O., Benfield, T.L., Nielsen, H.J., Calafat, J., and Borregaard, N. (1998). YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc. Assoc. Am. Physicians. 110, 351–360.Google Scholar

  • Vom Dorp, F., Tschirdewahn, S., Niedworok, C., Reis, H., Krause, H., Kempkensteffen, C., Busch, J., Kramer, G., Shariat, S.F., Nyirady, P., et al. (2015). Circulating and tissue expression levels of YKL-40 in renal cell cancer. J. Urol. 5347, 04920–04924.Google Scholar

  • Voronov, E., Dotan, S., Krelin, Y., Song, X., Elkabets, M., Carmi, Y., Rider, P., Idan, C., Romzova, M., Kaplanov, I., et al. (2013). Unique versus redundant functions of IL-1a and IL-1b in the tumor microenvironment. Front Immunol. 4, 177.Google Scholar

  • Vos, K., Steenbakkers, P., Miltenburg, A.M., Bos, E., van Den Heuvel, M.W., van Hogezand, R.A., de Vries, R.R., Breedveld, F.C., and Boots, A.M. (2000). Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 59, 544–548.CrossrefGoogle Scholar

  • Ward, J.M., Yoon, M., Anver, M.R., Haines, D.C., Kudo, G., Gonzalez, F.J., and Kimura, S. (2001). Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am. J. Pathol. 158, 323–332.Google Scholar

  • Xiao, W., Meng, G., Zhao, Y., Yuan, H., Li, T., Peng, Y., Zhao, Y., Luo, M., Zhao, W., Li, Z., and Zheng, X. (2014). Human secreted protein SI-CLP aggravates the inflammation of rheumatoid arthritis and is a potential macrophage inflammatory regulator. Arthritis Rheumatol. 66, 1141–1152.Google Scholar

  • Xu, Y., Yuan, J., Zhang, Z., Lin, L., and Xu, S. (2012). Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis. Mol. Biol. Rep. 39, 8979–8985.CrossrefGoogle Scholar

  • Xu, C.H., Yu, L.K., and Hao, K.K. (2014). Serum YKL-40 level is associated with the chemotherapy response and prognosis of patients with small cell lung cancer. PLoS One 9, e96384.Google Scholar

  • Zhang, J., Gratchev, A., Riabov, V., Mamidi, S., Schmuttermaier, C., Krusell, L., Kremmer, E., Workman, G., Sage, E. H., Jalkanen, S., et al. (2009). A novel GGA-binding site is required for intracellular sorting mediated by stabilin-1. Mol. Cell Biol. 29, 6097–6105.CrossrefGoogle Scholar

  • Zheng, X., Xing, S., Liu, X.M., Liu, W., Liu, D., Chi, P.D., Chen, H., Dai, S.Q., Zhong, Q., Zeng, M.S., et al. (2014). Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma. BMC Cancer 14, 490.CrossrefGoogle Scholar

  • Zhu, C.B., Chen, L.L., Tian, J.J., Su, L., Wang, C., Gai, Z.T., Du, W.J., and Ma, G.L. (2012). Elevated serum YKL-40 level predicts poor prognosis in hepatocellular carcinoma after surgery. Ann. Surg. Oncol. 19, 817–825.CrossrefGoogle Scholar

About the article

Corresponding author: Julia Kzhyshkowska, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Department of Innate Immunity and Tolerance, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia; and German Red Cross Blood Service Baden-Württemberg – Hessen, Friedrich-Ebert Strasse 107, D-68167 Mannheim, Germany, e-mail:


Received: 2015-11-02

Accepted: 2015-12-21

Published Online: 2016-01-04

Published in Print: 2016-03-01


Citation Information: Biological Chemistry, Volume 397, Issue 3, Pages 231–247, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2015-0269.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Ilja Ovsiy, Vladimir Riabov, Ioannis Manousaridis, Julia Michel, Kondaiah Moganti, Shuiping Yin, Tengfei Liu, Carsten Sticht, Elisabeth Kremmer, Martin C. Harmsen, Sergij Goerdt, Alexei Gratchev, and Julia Kzhyshkowska
Scientific Reports, 2017, Volume 7, Number 1
[4]
Carolina Araújo Viana, Márcio V. Ramos, José Delano Barreto Marinho Filho, Letícia Veras Costa Lotufo, Ingrid Samantha Tavares Figueiredo, Jefferson Soares de Oliveira, Pietro Mastroeni, José Vitor Lima-Filho, and Nylane Maria Nunes Alencar
Naunyn-Schmiedeberg's Archives of Pharmacology, 2017
[5]
Matthew Gormley, Katherine Ona, Mirhan Kapidzic, Tamara Garrido-Gomez, Tamara Zdravkovic, and Susan J. Fisher
American Journal of Obstetrics and Gynecology, 2017, Volume 217, Number 2, Page 200.e1
[7]
Seema Patel and Arun Goyal
International Journal of Biological Macromolecules, 2017, Volume 97, Page 331
[8]
C. Sanfilippo, G. Nunnari, A. Calcagno, L. Malaguarnera, K. Blennow, H. Zetterberg, and M. Di Rosa
Virus Research, 2017, Volume 227, Page 220

Comments (0)

Please log in or register to comment.
Log in