Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2016

The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes

  • Stephen C. Harmer and Andrew Tinker EMAIL logo
From the journal Biological Chemistry

Abstract

Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.

Acknowledgments

The work in our laboratories is supported by the British Heart Foundation, Medical Research Council, and The National Institute for Health Research Barts Cardiovascular Biomedical Research Unit. S.C.H. is the recipient of a British Heart Foundation Intermediate Basic Science Research Fellowship [FS/12/59/29756]. Efficacy and Mechanism Evaluation Programme, (Grant/Award Number: ‘Barts CV-BRU’).

Conflict of interest statement: The authors have no conflicts of interest to declare.

References

Abbott, G.W., Sesti, F., Splawski, I., Buck, M.E., Lehmann, M.H., Timothy, K.W., Keating, M.T., and Goldstein, S.A. (1999). MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187.10.1016/S0092-8674(00)80728-XSearch in Google Scholar

Abbott, G.W., Xu, X., and Roepke, T.K. (2007). Impact of ancillary subunits on ventricular repolarization. J. Electrocardiol. 40, S42–S46.10.1016/j.jelectrocard.2007.05.021Search in Google Scholar PubMed PubMed Central

Akar, F.G., Yan, G.X., Antzelevitch, C., and Rosenbaum, D.S. (2002). Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation 105, 1247–1253.10.1161/hc1002.105231Search in Google Scholar PubMed

Amin, A.S., Giudicessi, J.R., Tijsen, A.J., Spanjaart, A.M., Reckman, Y.J., Klemens, C.A., Tanck, M.W., Kapplinger, J.D., Hofman, N., Sinner, M.F., et al. (2012). Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur. Heart J. 33, 714–723.10.1093/eurheartj/ehr473Search in Google Scholar PubMed PubMed Central

Anderson, C.L., Delisle, B.P., Anson, B.D., Kilby, J.A., Will, M.L., Tester, D.J., Gong, Q.M., Zhou, Z.F., Ackerman, M.J., and January, C.T. (2006). Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113, 365–373.10.1161/CIRCULATIONAHA.105.570200Search in Google Scholar PubMed

Anderson, C.L., Kuzmicki, C.E., Childs, R.R., Hintz, C.J., Delisle, B.P., and January, C.T. (2014). Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat. Commun. 5, 5535.10.1038/ncomms6535Search in Google Scholar PubMed PubMed Central

Arking, D.E., Pfeufer, A., Post, W., Kao, W.H., Newton-Cheh, C., Ikeda, M., West, K., Kashuk, C., Akyol, M., Perz, S., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651.10.1038/ng1790Search in Google Scholar PubMed

Arking, D.E., Pulit, S.L., Crotti, L., van der Harst, P., Munroe, P.B., Koopmann, T.T., Sotoodehnia, N., Rossin, E.J., Morley, M., Wang, X., et al. (2014). Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836.10.1038/ng.3014Search in Google Scholar PubMed PubMed Central

Aronov, A.M. (2008). Ligand structural aspects of hERG channel blockade. Curr. Top. Med. Chem. 8, 1113–1127.10.2174/156802608785700061Search in Google Scholar PubMed

Auld, D.S., Thorne, N., Maguire, W.F., and Inglese, J. (2009). Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl. Acad. Sci. USA 106, 3585–3590.10.1073/pnas.0813345106Search in Google Scholar PubMed PubMed Central

Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G. (1996). K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384, 78–80.10.1038/384078a0Search in Google Scholar PubMed

Bartos, D.C., Giudicessi, J.R., Tester, D.J., Ackerman, M.J., Ohno, S., Horie, M., Gollob, M.H., Burgess, D.E., and Delisle, B.P. (2014). A KCNQ1 mutation contributes to the concealed type 1 long QT phenotype by limiting the Kv7.1 channel conformational changes associated with protein kinase A phosphorylation. Heart Rhythm. 11, 459–468.10.1016/j.hrthm.2013.11.021Search in Google Scholar PubMed PubMed Central

Bellin, M., Casini, S., Davis, R.P., D’Aniello, C., Haas, J., Ward-van, O.D., Tertoolen, L.G., Jung, C.B., Elliott, D.A., Welling, A., et al. (2013). Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 32, 3161–3175.10.1038/emboj.2013.240Search in Google Scholar PubMed PubMed Central

Bennett, P.B., Yazawa, K., Makita, N., and George, A.L., Jr. (1995). Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685.10.1038/376683a0Search in Google Scholar PubMed

Bhuiyan, Z.A., Momenah, T.S., Amin, A.S., Al-Khadra, A.S., Alders, M., Wilde, A.A., and Mannens, M.M. (2008). An intronic mutation leading to incomplete skipping of exon-2 in KCNQ1 rescues hearing in Jervell and Lange-Nielsen syndrome. Prog. Biophys. Mol. Biol. 98, 319–327.10.1016/j.pbiomolbio.2008.10.004Search in Google Scholar PubMed

Brink, P.A., Crotti, L., Corfield, V., Goosen, A., Durrheim, G., Hedley, P., Heradien, M., Geldenhuys, G., Vanoli, E., Bacchini, S., et al. (2005). Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation 112, 2602–2610.10.1161/CIRCULATIONAHA.105.572453Search in Google Scholar PubMed

Catterall, W.A. (2012). Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577–2589.10.1113/jphysiol.2011.224204Search in Google Scholar PubMed PubMed Central

Chang, K.C., Barth, A.S., Sasano, T., Kizana, E., Kashiwakura, Y., Zhang, Y., Foster, D.B., and Marban, E. (2008). CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl. Acad. Sci. USA 105, 4477–4482.10.1073/pnas.0709118105Search in Google Scholar PubMed PubMed Central

Chen, L., Kurokawa, J., and Kass, R.S. (2005). Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase a regulation of a heart potassium channel. J. Biol. Chem. 280, 31347–31352.10.1074/jbc.M505191200Search in Google Scholar PubMed

Chen, L., Marquardt, M.L., Tester, D.J., Sampson, K.J., Ackerman, M.J., and Kass, R.S. (2007). Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA 104, 20990–20995.10.1073/pnas.0710527105Search in Google Scholar PubMed PubMed Central

Chouabe, C., Neyroud, N., Guicheney, P., Lazdunski, M., Romey, G., and Barhanin, J. (1997). Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 16, 5472–5479.10.1093/emboj/16.17.5472Search in Google Scholar PubMed PubMed Central

Crotti, L., Johnson, C.N., Graf, E., De Ferrari, G.M., Cuneo, B.F., Ovadia, M., Papagiannis, J., Feldkamp, M.D., Rathi, S.G., Kunic, J.D., et al. (2013). Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127, 1009–1017.10.1161/CIRCULATIONAHA.112.001216Search in Google Scholar PubMed PubMed Central

Dahimene, S., Alcolea, S., Naud, P., Jourdon, P., Escande, D., Brasseur, R., Thomas, A., Baro, I., and Merot, J. (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression-implications in the Romano-Ward LQT1 syndrome. Circ. Res. 99, 1076–1083.10.1161/01.RES.0000250262.12219.95Search in Google Scholar PubMed

Davis, R.P., Casini, S., van den Berg, C.W., Hoekstra, M., Remme, C.A., Dambrot, C., Salvatori, D., Oostwaard, D.W., Wilde, A.A., Bezzina, C.R., et al. (2012). Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079–3091.10.1161/CIRCULATIONAHA.111.066092Search in Google Scholar PubMed

de Villiers, C.P., van der Merwe, L., Crotti, L., Goosen, A., George, A.L., Jr., Schwartz, P.J., Brink, P.A., Moolman-Smook, J.C., and Corfield, V.A. (2014). AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ. Cardiovasc. Genet. 7, 599–606.10.1161/CIRCGENETICS.113.000580Search in Google Scholar PubMed PubMed Central

Decher, N., Bundis, F., Vajna, R., and Steinmeyer, K. (2003). KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Pflugers Arch. 446, 633–640.10.1007/s00424-003-1127-7Search in Google Scholar PubMed

Deo, R. and Albert, C.M. (2012). Epidemiology and genetics of sudden cardiac death. Circulation 125, 620–637.10.1161/CIRCULATIONAHA.111.023838Search in Google Scholar PubMed PubMed Central

Doss, M.X., Di Diego, J.M., Goodrow, R.J., Wu, Y., Cordeiro, J.M., Nesterenko, V.V., Barajas-Martinez, H., Hu, D., Urrutia, J., Desai, M., et al. (2012). Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr). PLoS One 7, e40288.10.1371/journal.pone.0040288Search in Google Scholar PubMed PubMed Central

Drumm, M.L., Wilkinson, D.J., Smit, L.S., Worrell, R.T., Strong, T.V., Frizzell, R.A., Dawson, D.C., and Collins, F.S. (1991). Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799.10.1126/science.1722350Search in Google Scholar PubMed

Fermini, B. and Fossa, A.A. (2003). The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discov. 2, 439–447.10.1038/nrd1108Search in Google Scholar PubMed

Ficker, E., Dennis, A.T., Obejero-Paz, C.A., Castaldo, P., Taglialatela, M., and Brown, A.M. (2000). Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome. J. Mol. Cell. Cardiol. 32, 2327–2337.10.1006/jmcc.2000.1263Search in Google Scholar PubMed

Franqueza, L., Lin, M., Splawski, I., Keating, M.T., and Sanguinetti, M.C. (1999). Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J. Biol. Chem. 274, 21063–21070.10.1074/jbc.274.30.21063Search in Google Scholar PubMed

Frischmeyer, P.A. and Dietz, H.C. (1999). Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900.10.1093/hmg/8.10.1893Search in Google Scholar PubMed

Gaba, P., Bos, J.M., Cannon, B.C., Cha, Y.M., Friedman, P.A., Asirvatham, S.J., and Ackerman, M.J. (2015). Implantable cardioverter-defibrillator explantation for overdiagnosed or overtreated congenital long QT syndrome. Heart Rhythm. Dec 8. pii: S1547-5271(15)01521-0. doi: 10.1016/j.hrthm.2015.12.008. [Epub ahead of print]Search in Google Scholar PubMed

Giudicessi, J.R. and Ackerman, M.J. (2013). Prevalence and potential genetic determinants of sensorineural deafness in KCNQ1 homozygosity and compound heterozygosity. Circ. Cardiovasc. Genet. 6, 193–200.10.1161/CIRCGENETICS.112.964684Search in Google Scholar PubMed PubMed Central

Gong, Q., Zhang, L., Vincent, G.M., Horne, B.D., and Zhou, Z. (2007). Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation 116, 17–24.10.1161/CIRCULATIONAHA.107.708818Search in Google Scholar PubMed PubMed Central

Harmer, S.C., Wilson, A.J., Aldridge, R., and Tinker, A. (2010). Mechanisms of disease pathogenesis in long QT syndrome type 5. Am. J. Physiol. Cell Physiol. 298, C263–C273.10.1152/ajpcell.00308.2009Search in Google Scholar PubMed PubMed Central

Harmer, S.C., Mohal, J.S., Kemp, D., and Tinker, A. (2012). Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel. Biochem. J. 443, 635–642.10.1042/BJ20111912Search in Google Scholar PubMed

Harmer, S.C., Mohal, J.S., Royal, A.A., McKenna, W.J., Lambiase, P.D., and Tinker, A. (2014). Cellular mechanisms underlying the increased disease severity seen for patients with long QT syndrome caused by compound mutations in KCNQ1. Biochem. J. 462, 133–142.10.1042/BJ20140425Search in Google Scholar PubMed

Head, C.E., Balasubramaniam, R., Thomas, G., Goddard, C.A., Lei, M., Colledge, W.H., Grace, A.A., and Huang, C.L. (2005). Paced electrogram fractionation analysis of arrhythmogenic tendency in DeltaKPQ Scn5a mice. J. Cardiovasc. Electrophysiol. 16, 1329–1340.10.1111/j.1540-8167.2005.50086.xSearch in Google Scholar

Heijman, J., Spatjens, R.L., Seyen, S.R., Lentink, V., Kuijpers, H.J., Boulet, I.R., de Windt, L.J., David, M., and Volders, P.G. (2012). Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1. Circ. Res. 110, 211–219.10.1161/CIRCRESAHA.111.249482Search in Google Scholar

Herskowitz, I. (1987). Functional inactivation of genes by dominant negative mutations. Nature 329, 219–222.10.1038/329219a0Search in Google Scholar

Hoekstra, M., Mummery, C.L., Wilde, A.A., Bezzina, C.R., and Verkerk, A.O. (2012). Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 3, 346.10.3389/fphys.2012.00346Search in Google Scholar

Huang, L., Bitner-Glindzicz, M., Tranebjaerg, L., and Tinker, A. (2001). A spectrum of functional effects for disease causing mutations in the Jervell and Lange-Nielsen syndrome. Cardiovasc. Res. 51, 670–680.10.1016/S0008-6363(01)00350-9Search in Google Scholar

Itoh, H., Shimizu, W., Hayashi, K., Yamagata, K., Sakaguchi, T., Ohno, S., Makiyama, T., Akao, M., Ai, T., Noda, T., et al. (2010). Long QT syndrome with compound mutations is associated with a more severe phenotype: a Japanese multicenter study. Heart Rhythm. 7, 1411–1418.10.1016/j.hrthm.2010.06.013Search in Google Scholar

Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229.10.1038/nature09747Search in Google Scholar

Jamshidi, Y., Nolte, I.M., Dalageorgou, C., Zheng, D., Johnson, T., Bastiaenen, R., Ruddy, S., Talbott, D., Norris, K.J., Snieder, H., et al. (2012). Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J. Am. Coll. Cardiol. 60, 841–850.10.1016/j.jacc.2012.03.031Search in Google Scholar

Jervell, A. and Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prologation of Q-T interval and sudden death. Am. Heart J. 54, 59–68.10.1016/0002-8703(57)90079-0Search in Google Scholar

Jost, N., Virag, L., Bitay, M., Takacs, J., Lengyel, C., Biliczki, P., Nagy, Z., Bogats, G., Lathrop, D.A., Papp, J.G., et al. (2005). Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 112, 1392–1399.10.1161/CIRCULATIONAHA.105.550111Search in Google Scholar PubMed

Kapoor, A., Sekar, R.B., Hansen, N.F., Fox-Talbot, K., Morley, M., Pihur, V., Chatterjee, S., Brandimarto, J., Moravec, C.S., Pulit, S.L., et al. (2014). An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. Am. J. Hum. Genet. 94, 854–869.10.1016/j.ajhg.2014.05.001Search in Google Scholar PubMed PubMed Central

Kapplinger, J.D., Tester, D.J., Salisbury, B.A., Carr, J.L., Harris-Kerr, C., Pollevick, G.D., Wilde, A.A., and Ackerman, M.J. (2009). Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 6, 1297–1303.10.1016/j.hrthm.2009.05.021Search in Google Scholar

Karjalainen, J., Viitasalo, M., Manttari, M., and Manninen, V. (1994). Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. J. Am. Coll. Cardiol. 23, 1547–1553.10.1016/0735-1097(94)90654-8Search in Google Scholar

Kerem, E., Hirawat, S., Armoni, S., Yaakov, Y., Shoseyov, D., Cohen, M., Nissim-Rafinia, M., Blau, H., Rivlin, J., Aviram, M., et al. (2008). Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372, 719–727.10.1016/S0140-6736(08)61168-XSearch in Google Scholar

Knollmann, B.C. (2013). Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? Circ. Res. 112, 969–976.10.1161/CIRCRESAHA.112.300567Search in Google Scholar PubMed PubMed Central

Kolder, I.C., Tanck, M.W., Postema, P.G., Barc, J., Sinner, M.F., Zumhagen, S., Husemann, A., Stallmeyer, B., Koopmann, T.T., Hofman, N., et al. (2015). Analysis for genetic modifiers of disease severity in patients with long-QT syndrome type 2. Circ. Cardiovasc. Genet. 8, 447–456.10.1161/CIRCGENETICS.114.000785Search in Google Scholar PubMed PubMed Central

Krumerman, A., Gao, X.H., Bian, J.S., Melman, Y.F., Kagan, A., and McDonald, T.V. (2004). An LQT mutant minK alters KvLQT1 trafficking. Am. J. Physiol. Cell. Physiol. 286, C1453–C1463.10.1152/ajpcell.00275.2003Search in Google Scholar PubMed

Kurokawa, J., Chen, L., and Kass, R.S. (2003). Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc. Natl. Acad. Sci. USA 100, 2122–2127.10.1073/pnas.0434935100Search in Google Scholar PubMed PubMed Central

Lengyel, C., Dezsi, L., Biliczki, P., Horvath, C., Virag, L., Iost, N., Nemeth, M., Talosi, L., Papp, J.G., and Varro, A. (2004). Effect of a neuroprotective drug, eliprodil on cardiac repolarisation: importance of the decreased repolarisation reserve in the development of proarrhythmic risk. Br. J. Pharmacol. 143, 152–158.10.1038/sj.bjp.0705901Search in Google Scholar PubMed PubMed Central

Li, X., Buckton, A.J., Wilkinson, S.L., John, S., Walsh, R., Novotny, T., Valaskova, I., Gupta, M., Game, L., Barton, P.J., et al. (2013). Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One 8, e67744.10.1371/journal.pone.0067744Search in Google Scholar PubMed PubMed Central

Liang, P., Lan, F., Lee, A.S., Gong, T., Sanchez-Freire, V., Wang, Y., Diecke, S., Sallam, K., Knowles, J.W., Wang, P.J., et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677–1691.10.1161/CIRCULATIONAHA.113.001883Search in Google Scholar PubMed PubMed Central

Lieu, D.K., Fu, J.D., Chiamvimonvat, N., Tung, K.C., McNerney, G.P., Huser, T., Keller, G., Kong, C.W., and Li, R.A. (2013). Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Arrhythm. Electrophysiol. 6, 191–201.10.1161/CIRCEP.111.973420Search in Google Scholar PubMed PubMed Central

Makita, N., Behr, E., Shimizu, W., Horie, M., Sunami, A., Crotti, L., Schulze-Bahr, E., Fukuhara, S., Mochizuki, N., Makiyama, T., et al. (2008). The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest. 118, 2219–2229.10.1172/JCI34057Search in Google Scholar PubMed PubMed Central

Marx, S.O., Kurokawa, J., Reiken, S., Motoike, H., D’Armiento, J., Marks, A.R., and Kass, R.S. (2002). Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295, 496–499.10.1126/science.1066843Search in Google Scholar PubMed

Matsa, E., Rajamohan, D., Dick, E., Young, L., Mellor, I., Staniforth, A., and Denning, C. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962.10.1093/eurheartj/ehr073Search in Google Scholar PubMed PubMed Central

Matsa, E., Dixon, J.E., Medway, C., Georgiou, O., Patel, M.J., Morgan, K., Kemp, P.J., Staniforth, A., Mellor, I., and Denning, C. (2014). Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur. Heart J. 35, 1078–1087.10.1093/eurheartj/eht067Search in Google Scholar PubMed PubMed Central

Mattmann, M.E., Yu, H., Lin, Z., Xu, K., Huang, X., Long, S., Wu, M., McManus, O.B., Engers, D.W., Le, U.M., et al. (2012). Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator. Bioorg. Med. Chem. Lett. 22, 5936–5941.10.1016/j.bmcl.2012.07.060Search in Google Scholar PubMed PubMed Central

McDonald, T.V., Yu, Z., Ming, Z., Palma, E., Meyers, M.B., Wang, K.W., Goldstein, S.A., and Fishman, G.I. (1997). A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature 388, 289–292.10.1038/40882Search in Google Scholar PubMed

McElroy, S.P., Nomura, T., Torrie, L.S., Warbrick, E., Gartner, U., Wood, G., and McLean, W.H. (2013). A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol. 11, e1001593.10.1371/journal.pbio.1001593Search in Google Scholar PubMed PubMed Central

Medeiros-Domingo, A., Kaku, T., Tester, D.J., Iturralde-Torres, P., Itty, A., Ye, B., Valdivia, C., Ueda, K., Canizales-Quinteros, S., Tusie-Luna, M.T., et al. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116, 134–142.10.1161/CIRCULATIONAHA.106.659086Search in Google Scholar PubMed PubMed Central

Mehta, A., Sequiera, G.L., Ramachandra, C.J., Sudibyo, Y., Chung, Y., Sheng, J., Wong, K.Y., Tan, T.H., Wong, P., Liew, R., et al. (2014). Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovasc. Res. 102, 497–506.10.1093/cvr/cvu060Search in Google Scholar PubMed

Mitcheson, J.S., Chen, J., Lin, M., Culberson, C., and Sanguinetti, M.C. (2000). A structural basis for drug-induced long QT syndrome. Proc. Natl. Acad. Sci. USA 97, 12329–12333.10.1073/pnas.210244497Search in Google Scholar PubMed PubMed Central

Mohler, P.J., Schott, J.J., Gramolini, A.O., Dilly, K.W., Guatimosim, S., duBell, W.H., Song, L.S., Haurogne, K., Kyndt, F., Ali, M.E., et al. (2003). Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639.10.1038/nature01335Search in Google Scholar PubMed

Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409.10.1056/NEJMoa0908679Search in Google Scholar PubMed

Moss, A.J. and Kass, R.S. (2005). Long QT syndrome: from channels to cardiac arrhythmias. J. Clin. Invest. 115, 2018–2024.10.1172/JCI25537Search in Google Scholar PubMed PubMed Central

Moss, A.J., Zareba, W., Kaufman, E.S., Gartman, E., Peterson, D.R., Benhorin, J., Towbin, J.A., Keating, M.T., Priori, S.G., Schwartz, P.J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105, 794–799.10.1161/hc0702.105124Search in Google Scholar PubMed

Moss, A.J., Shimizu, W., Wilde, A.A., Towbin, J.A., Zareba, W., Robinson, J.L., Qi, M., Vincent, G.M., Ackerman, M.J., Kaufman, E.S., et al. (2007). Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489.10.1161/CIRCULATIONAHA.106.665406Search in Google Scholar PubMed PubMed Central

Moss, A.J., Zareba, W., Schwarz, K.Q., Rosero, S., McNitt, S., and Robinson, J.L. (2008). Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J. Cardiovasc. Electrophysiol. 19, 1289–1293.10.1111/j.1540-8167.2008.01246.xSearch in Google Scholar PubMed PubMed Central

Mullard, A. (2014). EMA reconsiders ‘read-through’ drug against Duchenne muscular dystrophy following appeal. Nat. Biotechnol. 32, 706.10.1038/nbt0814-706Search in Google Scholar PubMed

Munroe, P.B. and Tinker, A. (2015). Genome-wide association studies and contribution to cardiovascular physiology. Physiol. Genomics 47, 365–375.10.1152/physiolgenomics.00004.2015Search in Google Scholar PubMed PubMed Central

Nagy, N., Szuts, V., Horvath, Z., Seprenyi, G., Farkas, A.S., Acsai, K., Prorok, J., Bitay, M., Kun, A., Pataricza, J., et al. (2009). Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J. Mol. Cell Cardiol. 47, 656–663.10.1016/j.yjmcc.2009.07.019Search in Google Scholar PubMed

Napolitano, C., Schwartz, P.J., Brown, A.M., Ronchetti, E., Bianchi, L., Pinnavaia, A., Acquaro, G., and Priori, S.G. (2000). Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J. Cardiovasc. Electrophysiol. 11, 691–696.10.1111/j.1540-8167.2000.tb00033.xSearch in Google Scholar PubMed

Newton-Cheh, C., Eijgelsheim, M., Rice, K.M., de Bakker, P.I., Yin, X., Estrada, K., Bis, J.C., Marciante, K., Rivadeneira, F., Noseworthy, P.A., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406.10.1038/ng.364Search in Google Scholar PubMed PubMed Central

Nicolas, C.S., Park, K.H., El, H.A., Camonis, J., Kass, R.S., Escande, D., Merot, J., Loussouarn, G., Le, B.F., and Baro, I. (2008). IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc. Res. 79, 427–435.10.1093/cvr/cvn085Search in Google Scholar PubMed PubMed Central

Nikolov, N.G., Dybdahl, M., Jonsdottir, S.O., and Wedebye, E.B. (2014). hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity. Bioorg. Med. Chem. 22, 6004–6013.10.1016/j.bmc.2014.09.007Search in Google Scholar PubMed

Nishio, Y., Makiyama, T., Itoh, H., Sakaguchi, T., Ohno, S., Gong, Y.Z., Yamamoto, S., Ozawa, T., Ding, W.G., Toyoda, F., et al. (2009). D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J. Am. Coll. Cardiol. 54, 812–819.10.1016/j.jacc.2009.06.005Search in Google Scholar PubMed

Nof, E., Barajas-Martinez, H., Eldar, M., Urrutia, J., Caceres, G., Rosenfeld, G., Bar-Lev, D., Feinberg, M., Burashnikov, E., Casis, O., et al. (2011). LQT5 masquerading as LQT2: a dominant negative effect of KCNE1-D85N rare polymorphism on KCNH2 current. Europace 13, 1478–1483.10.1093/europace/eur184Search in Google Scholar PubMed PubMed Central

Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., Smits, J.F., Flameng, W., Clancy, C.E., Moons, L., et al. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat. Med. 7, 1021–1027.10.1038/nm0901-1021Search in Google Scholar PubMed

Paulussen, A., Raes, A., Matthijs, G., Snyders, D.J., Cohen, N., and Aerssens, J. (2002). A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J. Biol. Chem. 277, 48610–48616.10.1074/jbc.M206569200Search in Google Scholar PubMed

Paulussen, A.D., Gilissen, R.A., Armstrong, M., Doevendans, P.A., Verhasselt, P., Smeets, H.J., Schulze-Bahr, E., Haverkamp, W., Breithardt, G., Cohen, N., et al. (2004). Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. (Berl) 82, 182–188.10.1007/s00109-003-0522-zSearch in Google Scholar PubMed

Peroz, D., Dahimene, S., Baro, I., Loussouarn, G., and Merot, J. (2009). LQT1-associated mutations increase KCNQ1 proteasomal degradation independently of Derlin-1. J. Biol. Chem. 284, 5250–5256.10.1074/jbc.M806459200Search in Google Scholar PubMed

Pfeufer, A., Sanna, S., Arking, D.E., Muller, M., Gateva, V., Fuchsberger, C., Ehret, G.B., Orru, M., Pattaro, C., Kottgen, A., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414.10.1038/ng.362Search in Google Scholar

Plaster, N.M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., Donaldson, M.R., Iannaccone, S.T., Brunt, E., Barohn, R., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105, 511–519.10.1016/S0092-8674(01)00342-7Search in Google Scholar

Priori, S.G., Napolitano, C., and Schwartz, P.J. (1999). Low penetrance in the long-QT syndrome: clinical impact. Circulation 99, 529–533.10.1161/01.CIR.99.4.529Search in Google Scholar

Priori, S.G., Blomstrom-Lundqvist, C., Mazzanti, A., Blom, N., Borggrefe, M., Camm, J., Elliott, P.M., Fitzsimons, D., Hatala, R., Hindricks, G., et al. (2015). 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867.10.1093/eurheartj/ehv316Search in Google Scholar

Ramsey, B.W., Davies, J., McElvaney, N.G., Tullis, E., Bell, S.C., Drevinek, P., Griese, M., McKone, E.F., Wainwright, C.E., Konstan, M.W., et al. (2011). A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672.10.1056/NEJMoa1105185Search in Google Scholar

Roder, K., Werdich, A.A., Li, W., Liu, M., Kim, T.Y., Organ-Darling, L.E., Moshal, K.S., Hwang, J.M., Lu, Y., Choi, B.R., et al. (2014). RING finger protein RNF207, a novel regulator of cardiac excitation. J. Biol. Chem. 289, 33730–33740.10.1074/jbc.M114.592295Search in Google Scholar

Roepke, T.K., Kontogeorgis, A., Ovanez, C., Xu, X., Young, J.B., Purtell, K., Goldstein, P.A., Christini, D.J., Peters, N.S., Akar, F.G., et al. (2008). Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f). FASEB J. 22, 3648–3660.10.1096/fj.08-110171Search in Google Scholar

Romano, C. (1965). Congenital cardiac arrhythmia. Lancet 1, 658–659.10.1016/S0140-6736(65)91761-7Search in Google Scholar

Ruwald, M.H., Xu, P.X., Moss, A.J., Zareba, W., Baman, J., McNitt, S., Kanters, J.K., Shimizu, W., Wilde, A.A., Jons, C., et al. (2015). Stop-codon and C-terminal nonsense mutations are associated with a lower risk of cardiac events in patients with long QT syndrome type 1. Heart Rhythm. 13, 122–131.10.1016/j.hrthm.2015.08.033Search in Google Scholar

Sanguinetti, M.C., Jiang, C., Curran, M.E., and Keating, M.T. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307.10.1016/0092-8674(95)90340-2Search in Google Scholar

Sanguinetti, M.C., Curran, M.E., Spector, P.S., and Keating, M.T. (1996a). Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 93, 2208–2212.10.1073/pnas.93.5.2208Search in Google Scholar PubMed PubMed Central

Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L., and Keating, M.T. (1996b). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80–83.10.1038/384080a0Search in Google Scholar PubMed

Schmitt, N., Schwarz, M., Peretz, A., Abitbol, I., Attali, B., and Pongs, O. (2000). A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J. 19, 332–340.10.1093/emboj/19.3.332Search in Google Scholar PubMed PubMed Central

Schwartz, P.J., Priori, S.G., Spazzolini, C., Moss, A.J., Vincent, G.M., Napolitano, C., Denjoy, I., Guicheney, P., Breithardt, G., Keating, M.T., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95.10.1161/01.CIR.103.1.89Search in Google Scholar

Schwartz, P.J., Priori, S.G., and Napolitano, C. (2003). How really rare are rare diseases?: the intriguing case of independent compound mutations in the long QT syndrome. J. Cardiovasc. Electrophysiol. 14, 1120–1121.10.1046/j.1540-8167.2003.03339.xSearch in Google Scholar PubMed

Schwartz, P.J., Stramba-Badiale, M., Crotti, L., Pedrazzini, M., Besana, A., Bosi, G., Gabbarini, F., Goulene, K., Insolia, R., Mannarino, S., et al. (2009). Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767.10.1161/CIRCULATIONAHA.109.863209Search in Google Scholar PubMed PubMed Central

Schwartz, P.J., Crotti, L., and Insolia, R. (2012). Long-QT Syndrome: From Genetics to Management. Circ. Arrhythm. Electrophysiol. 5, 868–877.10.1161/CIRCEP.111.962019Search in Google Scholar PubMed PubMed Central

Seibert, F.S., Loo, T.W., Clarke, D.M., and Riordan, J.R. (1997). Cystic fibrosis: Channel, catalytic, and folding properties of the CFTR protein. J. Bioenerg. Biomembrane. 29, 429–442.10.1023/A:1022478822214Search in Google Scholar

Sesti, F., Abbott, G.W., Wei, J., Murray, K.T., Saksena, S., Schwartz, P.J., Priori, S.G., Roden, D.M., George, A.L., Jr., and Goldstein, S.A. (2000). A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 97, 10613–10618.10.1073/pnas.180223197Search in Google Scholar PubMed PubMed Central

Shattock, M.J. and Tipton, M.J. (2012). ‘Autonomic conflict’: a different way to die during cold water immersion? J. Physiol. 590, 3219–3230.10.1113/jphysiol.2012.229864Search in Google Scholar PubMed PubMed Central

Shu, L., Zhang, W., Su, G., Zhang, J., Liu, C., and Xu, J. (2013). Modulation of HERG K+ channels by chronic exposure to activators and inhibitors of PKA and PKC: actions independent of PKA and PKC phosphorylation. Cell Physiol. Biochem. 32, 1830–1844.10.1159/000356616Search in Google Scholar PubMed

Smith, J.L., Reloj, A.R., Nataraj, P.S., Bartos, D.C., Schroder, E.A., Moss, A.J., Ohno, S., Horie, M., Anderson, C.L., January, C.T., et al. (2013). Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum. Am. J. Physiol. Cell Physiol. 305, C919–C930.10.1152/ajpcell.00406.2012Search in Google Scholar PubMed PubMed Central

Splawski, I., Shen, J., Timothy, K.W., Lehmann, M.H., Priori, S., Robinson, J.L., Moss, A.J., Schwartz, P.J., Towbin, J.A., Vincent, G.M., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185.10.1161/01.CIR.102.10.1178Search in Google Scholar

Splawski, I., Timothy, K.W., Sharpe, L.M., Decher, N., Kumar, P., Bloise, R., Napolitano, C., Schwartz, P.J., Joseph, R.M., Condouris, K., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31.10.1016/j.cell.2004.09.011Search in Google Scholar PubMed

Sroubek, J. and McDonald, T.V. (2011). Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG). J. Biol. Chem. 286, 21927–21936.10.1074/jbc.M110.201699Search in Google Scholar PubMed PubMed Central

Stengl, M., Volders, P.G., Thomsen, M.B., Spatjens, R.L., Sipido, K.R., and Vos, M.A. (2003). Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. J. Physiol. 551, 777–786.10.1113/jphysiol.2003.044040Search in Google Scholar PubMed PubMed Central

Teng, S., Gao, L., Paajanen, V., Pu, J., and Fan, Z. (2009). Readthrough of nonsense mutation W822X in the SCN5A gene can effectively restore expression of cardiac Na+ channels. Cardiovasc. Res. 83, 473–480.10.1093/cvr/cvp116Search in Google Scholar PubMed PubMed Central

Terrenoire, C., Houslay, M.D., Baillie, G.S., and Kass, R.S. (2009). The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J. Biol. Chem. 284, 9140–9146.10.1074/jbc.M805366200Search in Google Scholar PubMed PubMed Central

Tester, D.J., Will, M.L., Haglund, C.M., and Ackerman, M.J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2, 507–517.10.1016/j.hrthm.2005.01.020Search in Google Scholar PubMed

Tinker, A. (2002). The assembly and targeting of potassium channels. In: The Assembly and Targeting of Ion Channels. J. Henley and S.J. Moss, eds. (Oxford, UK: Oxford University Press), pp. 28–57.10.1093/acprof:oso/9780192632241.003.0002Search in Google Scholar

Tomas, M., Napolitano, C., De, G.L., Bloise, R., Subirana, I., Malovini, A., Bellazzi, R., Arking, D.E., Marban, E., Chakravarti, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 55, 2745–2752.10.1016/j.jacc.2009.12.065Search in Google Scholar

Tristani-Firouzi, M., Jensen, J.L., Donaldson, M.R., Sansone, V., Meola, G., Hahn, A., Bendahhou, S., Kwiecinski, H., Fidzianska, A., Plaster, N., et al. (2002). Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388.10.1172/JCI15183Search in Google Scholar

Trudeau, M.C., Warmke, J.W., Ganetzky, B., and Robertson, G.A. (1995). HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95.10.1126/science.7604285Search in Google Scholar

Tyson, J., Tranebjaerg, L., Bellman, S., Wren, C., Taylor, J.F., Bathen, J., Aslaksen, B., Sorland, S.J., Lund, O., Malcolm, S., et al. (1997). IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum. Mol. Genet. 6, 2179–2185.10.1093/hmg/6.12.2179Search in Google Scholar

Ueda, K., Valdivia, C., Medeiros-Domingo, A., Tester, D.J., Vatta, M., Farrugia, G., Ackerman, M.J., and Makielski, J.C. (2008). Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc. Natl. Acad. Sci. USA 105, 9355–9360.10.1073/pnas.0801294105Search in Google Scholar

Vatta, M., Ackerman, M.J., Ye, B., Makielski, J.C., Ughanze, E.E., Taylor, E.W., Tester, D.J., Balijepalli, R.C., Foell, J.D., Li, Z., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114, 2104–2112.10.1161/CIRCULATIONAHA.106.635268Search in Google Scholar

Volders, P.G., Stengl, M., van Opstal, J.M., Gerlach, U., Spatjens, R.L., Beekman, J.D., Sipido, K.R., and Vos, M.A. (2003). Probing the contribution of IKs to canine ventricular repolarization: key role for β-adrenergic receptor stimulation. Circulation 107, 2753–2760.10.1161/01.CIR.0000068344.54010.B3Search in Google Scholar

Wainwright, C.E., Elborn, J.S., Ramsey, B.W., Marigowda, G., Huang, X., Cipolli, M., Colombo, C., Davies, J.C., De, B.K., Flume, P.A., et al. (2015). Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508ΔCFTR. N. Engl. J. Med. 373, 220–231.10.1056/NEJMoa1409547Search in Google Scholar

Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J.L., Moss, A.J., Towbin, J.A., and Keating, M.T. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811.10.1016/0092-8674(95)90359-3Search in Google Scholar

Wang, D.W., Yazawa, K., George, A.L., Jr., and Bennett, P.B. (1996). Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. USA 93, 13200–13205.10.1073/pnas.93.23.13200Search in Google Scholar PubMed PubMed Central

Wang, Z., Tristani Firouzi, M., Xu, Q., Lin, M., Keating, M.T., and Sanguinetti, M.C. (1999). Functional effects of mutations in KvLQT1 that cause long QT syndrome. J. Cardiovasc. Electrophysiol. 10, 817–826.10.1111/j.1540-8167.1999.tb00262.xSearch in Google Scholar

Wang, F., Liu, J., Hong, L., Liang, B., Graff, C., Yang, Y., Christiansen, M., Olesen, S.P., Zhang, L., and Kanters, J.K. (2013). The phenotype characteristics of type 13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R). Heart Rhythm. 10, 1500–1506.10.1016/j.hrthm.2013.07.022Search in Google Scholar

Ward, O.C. (1964). A new familial cardiac syndrome in children. J. Ir. med. Assoc. 54, 103–106.Search in Google Scholar

Ward, C.L., Omura, S., and Kopito, R.R. (1995). Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.10.1016/0092-8674(95)90240-6Search in Google Scholar

Welch, E.M., Barton, E.R., Zhuo, J., Tomizawa, Y., Friesen, W.J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C.R., Hwang, S., et al. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91.10.1038/nature05756Search in Google Scholar PubMed

Westenskow, P., Splawski, I., Timothy, K.W., Keating, M.T., and Sanguinetti, M.C. (2004). Compound mutations: a common cause of severe long-QT syndrome. Circulation 109, 1834–1841.10.1161/01.CIR.0000125524.34234.13Search in Google Scholar PubMed

Wilson, A.J., Quinn, K.V., Graves, F.M., Bitner-Glindzicz, M., and Tinker, A. (2005). Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1). Cardiovasc. Res. 67, 476–486.10.1016/j.cardiores.2005.04.036Search in Google Scholar PubMed

Witchel, H.J. and Hancox, J.C. (2000). Familial and acquired long qt syndrome and the cardiac rapid delayed rectifier potassium current. Clin. Exp. Pharmacol. Physiol. 27, 753–766.10.1046/j.1440-1681.2000.03337.xSearch in Google Scholar PubMed

Wu, D.M., Jiang, M., Zhang, M., Liu, X.S., Korolkova, Y.V., and Tseng, G.N. (2006). KCNE2 is colocalized with KCNQ1 and KCNE1 in cardiac myocytes and may function as a negative modulator of I(Ks) current amplitude in the heart. Heart Rhythm. 3, 1469–1480.10.1016/j.hrthm.2006.08.019Search in Google Scholar PubMed

Wu, G., Ai, T., Kim, J.J., Mohapatra, B., Xi, Y., Li, Z., Abbasi, S., Purevjav, E., Samani, K., Ackerman, M.J., et al. (2008). α-1-Syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ. Arrhythm. Electrophysiol. 1, 193–201.10.1161/CIRCEP.108.769224Search in Google Scholar PubMed PubMed Central

Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P.C., Hohnloser, S.H., Shimizu, W., Schwartz, P.J., Stanton, M., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105, 1943–1948.10.1161/01.CIR.0000014448.19052.4CSearch in Google Scholar

Yao, Y., Teng, S., Li, N., Zhang, Y., Boyden, P.A., and Pu, J. (2009). Aminoglycoside antibiotics restore functional expression of truncated HERG channels produced by nonsense mutations. Heart Rhythm. 6, 553–560.10.1016/j.hrthm.2009.01.017Search in Google Scholar PubMed

Yazawa, M., Hsueh, B., Jia, X., Pasca, A.M., Bernstein, J.A., Hallmayer, J., and Dolmetsch, R.E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234.10.1038/nature09855Search in Google Scholar PubMed PubMed Central

Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41.10.1161/CIRCRESAHA.108.192237Search in Google Scholar PubMed PubMed Central

Zhang, M., D’Aniello, C., Verkerk, A.O., Wrobel, E., Frank, S., Ward-van, O.D., Piccini, I., Freund, C., Rao, J., Seebohm, G., et al. (2014). Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl. Acad. Sci. USA 111, E5383–E5392.10.1073/pnas.1419553111Search in Google Scholar PubMed PubMed Central

Zhou, Z., Gong, Q., and January, C.T. (1999). Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J. Biol. Chem. 274, 31123–31126.10.1074/jbc.274.44.31123Search in Google Scholar PubMed

Received: 2015-12-16
Accepted: 2016-2-18
Published Online: 2016-2-23
Published in Print: 2016-7-1

©2016 by De Gruyter

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2015-0306/html
Scroll to top button