Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 397, Issue 9

Issues

The potential of the Galleria mellonella innate immune system is maximized by the co-presentation of diverse antimicrobial peptides

Mohammad Reza Bolouri Moghaddam
  • Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miray Tonk
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christine Schreiber
  • Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, D-35390 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denise Salzig
  • Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, D-35390 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Czermak
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, D-35390 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Vilcinskas
  • Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Rahnamaeian
  • Corresponding author
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-21 | DOI: https://doi.org/10.1515/hsz-2016-0157

Abstract

Antimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G. mellonella secretes a repertoire of distinct AMPs following an immune challenge, we selected three different AMPs: cecropin A (CecA), gallerimycin and cobatoxin. We found that cobatoxin was active against Micrococcus luteus at a minimum inhibitory concentration (MIC) of 120 μm, but at 60 μm when co-presented with 4 μm CecA. In contrast, the MIC of gallerimycin presented alone was 60 μm and the co-presentation of CecA did not affect this value. Cobatoxin and gallerimycin were both inactive against Escherichia coli at physiological concentrations, however gallerimycin could potentiate the sublethal dose of CecA (0.25 μm) at a concentration of 30 μm resulting in 100% lethality. The ability of gallerimycin to potentiate the CecA was investigated by flow cytometry, revealing that 30 μm gallerimycin sensitized E. coli cells by inducing membrane depolarization, which intensified the otherwise negligible effects of 0.25 μm CecA. We therefore conclude that G. mellonella maximizes the potential of its innate immune response by the co-presentation of different AMPs that become more effective at lower concentrations when presented simultaneously.

Keywords: cecropin A; cobatoxin; flow cytometry; gallerimycin; membrane depolarization

References

  • Al Souhail, Q., Hiromasa, Y., Rahnamaeian, M., Giraldo, M.C., Takahashi, D., Valent, B., Vilcinskas, A., and Kanost, M.R. (2016). Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta, Dev. Comp. Immunol. 61, 258–268.Web of ScienceGoogle Scholar

  • Barribeau, S.M., Sadd, B., du Plessis, L., and Schmid-Hempel, P. (2014). Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system. Proc. Natl. Acad. Sci. USA 111, 3496–3501.Google Scholar

  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., et al. (2014). Swiss-Model: modelling protein tertiary and quaternary structure using evolutionary information. Nuc. Acids Res. 42, 252–258.Google Scholar

  • Bolouri Moghaddam, M.R., Vilcinskas, A., and Rahnamaeian, M. (2015). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Mol. Plant Pathol. 17, 464–471.Web of ScienceGoogle Scholar

  • Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238–250.Google Scholar

  • Brown, S.E., Howard, A., Kasprzak, A.B., Gordon, K.H., and East, P.D. (2009). A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem. Mol. Biol. 39, 792–800.Google Scholar

  • Cai, Z., Xu, C.Q., Xu, Y.Q., Lu, W.Y., Chi, C.W., Shi, Y.Y., and Wu, J.H. (2004). Solution structure of BmBKTx1, a new BKCa1 channel blocker from the Chinese scorpion Buthus martensi Karsch. Biochemistry 43, 3764–3771.Google Scholar

  • Choi, H. and Lee, D.G. (2012). Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res. Microbiol. 163, 479–486.Web of ScienceGoogle Scholar

  • Christensen, B., Fink, J., Merrifield, R.B., and Mauzerall, D. (1988). Channel-forming properties of cecropins and related model compounds incorporated into planar lipid-membranes. Proc. Natl. Acad. Sci. USA 85, 5072–5076.Google Scholar

  • Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J.A., and Letellier, L. (1993). Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239–19245.Google Scholar

  • DeLucca, A.J., Bland, J.M., Jacks, T.J., Grimm, C., Cleveland, T.E., and Walsh, T.J. (1997). Fungicidal activity of cecropin A. Antimicrob. Agents Chemother. 41, 481–483.Google Scholar

  • Dobson, A.J., Purves, J., Kamysz, W., and Rolff, J. (2013). Comparing Selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One 8, e76521.Google Scholar

  • Engstrom, P., Carlsson, A., Engstrom, A., Tao, Z.J., and Bennich, H. (1984). The antibacterial effect of attacins from the silk moth hyalophora-cecropia is directed against the outer-membrane of Escherichia coli. EMBO J. 3, 3347–3351.Google Scholar

  • Epand, R.M. and Epand, R.F. (2011). Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 17, 298–305.Web of ScienceGoogle Scholar

  • Epand, R.F., Pollard, J.E., Wright, J.O., Savage, P.B., and Epand, R.M. (2010). Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob. Agents Chemother. 54, 3708–3713.Google Scholar

  • Fieck, A., Hurwitz, I., Kang, A.S., and Durvasula, R. (2010). Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp. Parasitol. 125, 342–347.Google Scholar

  • Gifford, J.L., Hunter, H.N., and Vogel, H.J. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62, 2588–2598.Google Scholar

  • Haine, E.R., Moret, Y., Siva-Jothy, M.T., and Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259.Web of ScienceGoogle Scholar

  • Hara, S. and Yamakawa, M. (1995). Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923–29927.Google Scholar

  • Jeu, L.A. and Fung, H.B. (2004). Daptomycin: a cyclic lipopeptide antimicrobial agent. Clin. Ther. 26, 1728–1757.Google Scholar

  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858.Google Scholar

  • Langen, G., Imani, J., Altincicek, B., Kieseritzky, G., Kogel, K.H., and Vilcinskas, A. (2006). Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol. Chem. 387, 549–557.Google Scholar

  • Lee, Y.S., Yun, E.K., Jang, W.S., Kim, I., Lee, J.H., Park, S.Y., Ryu, K.S., Seo, S.J., Kim, C.H., and Lee, I.H. (2004). Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 13, 65–72.Google Scholar

  • Levy, O., Ooi, C.E., Weiss, J., Lehrer, R.I., and Elsbach, P. (1994). Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J. Clin. Invest. 94, 672–682.Google Scholar

  • Lockey, T.D. and Ourth, D.D. (1996). Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur. J. Biochem. 236, 263–271.Google Scholar

  • Matsuzaki, K., Mitani, Y., Akada, K., Murase, O., Yoneyama, S., Zasloff, M., and Miyajima, K. (1998). Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37, 15144–15153.Google Scholar

  • Moore, A.J., Beazley, W.D., Bibby, M.C., and Devine, D.A. (1996). Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37, 1077–1089.Google Scholar

  • Nakajima, Y., Ishibashi, J., Yukuhiro, F., Asaoka, A., Taylor, D., and Yamakawa, M. (2003). Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim. Biophys. Acta Gen. Subj. 1624, 125–130.Google Scholar

  • Poeppel, A.K., Vogel, H., Wiesner, J., and Vilcinskas, A. (2015). Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob. Agents Chemother. 59, 2508–2514.Google Scholar

  • Rahnamaeian, M. (2011). Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal. Behav. 6, 1325–1332.Google Scholar

  • Rahnamaeian, M., Cytrynska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R.M., Zuchner, T., Sadd, B.M., Regoes, R.R., Schmid-Hempel, P., et al. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc. R. Soc. Lond. B. Biol. Sci. 282:20150293.Web of ScienceGoogle Scholar

  • Rahnamaeian, M., Cytrynska, M., Zdybicka-Barabas, A., and Vilcinskas, A. (2016). The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation. Peptides 78, 17–23.Web of ScienceGoogle Scholar

  • Samakovlis, C., Kimbrell, D.A., Kylsten, P., Engstrom, A., and Hultmark, D. (1990). The immune-response in Drosophila–pattern of cecropin expression and biological activity. EMBO J. 9, 2969–2976.Google Scholar

  • Schuhmann, B., Seitz, V., Vilcinskas, A., and Podsiadlowski, L. (2003). Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125–133.Google Scholar

  • Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., and Podsiadlowski, L. (2003). Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev. Comp. Immunol. 27, 207–215.Google Scholar

  • Thevissen, K., Warnecke, D.C., Francois, E.J.A., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B., Ferkel, K.K.A., and Cammue, B.P.A. (2004). Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 279, 3900–3905.Google Scholar

  • Tonk, M., Cabezas-Cruz, A., Valdes, J.J., Rego, R.O.M., Grubhoffer, L., Estrada-Pena, A., Vilcinskas, A., Kotsyfakis, M., and Rahnamaeian, M. (2015). Ixodes ricinus defensins attack distantly-related pathogens. Dev. Comp. Immunol. 53, 358–365.Web of ScienceGoogle Scholar

  • Vilcinskas, A., Mukherjee, K., and Vogel, H. (2013). Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proc. R. Soc. Lond. B. Biol. Sci. 280, 1–9.Google Scholar

  • Vogel, H., Altincicek, B., Gloeckner, G., and Vilcinskas, A. (2011). A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12, 308.Google Scholar

  • Westerhoff, H.V., Zasloff, M., Rosner, J.L., Hendler, R.W., Dewaal, A., Gomes, A.V., Jongsma, A.P.M., Riethorst, A., and Juretic, D. (1995). Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur. J. Biochem. 228, 257–264.Google Scholar

  • Yi, H.-Y., Chowdhury, M., Huang, Y.-D., and Yu, X.-Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822.Web of ScienceGoogle Scholar

  • Zdybicka-Barabas, A., Mak, P., Klys, A., Skrzypiec, K., Mendyk, E., Fiolka, M.J., and Cytrynska, M. (2012). Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria. Biochim. Biophys. Acta Biomembr. 1818, 2623–2635.Google Scholar

  • Zdybicka-Barabas, A., Staczek, S., Mak, P., Skrzypiec, K., Mendyk, E., and Cytrynska, M. (2013). Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochim. Biophys. Acta Biomembr. 1828, 1449–1456.Google Scholar

About the article

Received: 2016-03-23

Accepted: 2016-04-14

Published Online: 2016-04-21

Published in Print: 2016-09-01


Conflict of interest statement: The authors declare no conflict of interest.


Citation Information: Biological Chemistry, Volume 397, Issue 9, Pages 939–945, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0157.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniel Hoffmann, Dustin Eckhardt, Doreen Gerlach, Andreas Vilcinskas, and Peter Czermak
Protein Expression and Purification, 2018
[2]
Priscila Yumi Tanaka Shibao, Camila Takeno Cologna, Romualdo Morandi-Filho, Gisele Adriano Wiezel, Patricia Tiemi Fujimura, Carlos Ueira-Vieira, and Eliane Candiani Arantes
Journal of Venomous Animals and Toxins including Tropical Diseases, 2018, Volume 24, Number 1
[3]
Thais Pereira, Patrícia de Barros, Luciana Fugisaki, Rodnei Rossoni, Felipe Ribeiro, Raquel de Menezes, Juliana Junqueira, and Liliana Scorzoni
Journal of Fungi, 2018, Volume 4, Number 4, Page 128
[4]
Anna Lange, Andrea Schäfer, Annika Bender, Alexander Steimle, Sina Beier, Raphael Parusel, and Julia-Stefanie Frick
Frontiers in Immunology, 2018, Volume 9
[6]
Paulina Taszłow, Lidiia Vertyporokh, and Iwona Wojda
Journal of Invertebrate Pathology, 2017
[7]
Karen Luna-Ramirez, Miray Tonk, Mohammad Rahnamaeian, and Andreas Vilcinskas
Toxins, 2017, Volume 9, Number 1, Page 22
[8]
Iwona Wojda
Journal of Thermal Biology, 2017, Volume 68, Page 96
[9]
Miray Tonk, Andreas Vilcinskas, and Mohammad Rahnamaeian
Applied Microbiology and Biotechnology, 2016, Volume 100, Number 17, Page 7397

Comments (0)

Please log in or register to comment.
Log in