Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

See all formats and pricing
More options …
Volume 398, Issue 1 (Jan 2017)


Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones

Christin Peters
  • Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Rudroff
  • Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marko D. Mihovilovic
  • Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uwe T. Bornscheuer
  • Corresponding author
  • Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-10 | DOI: https://doi.org/10.1515/hsz-2016-0150


Nature uses the advantages of fusion proteins for multi-step reactions to facilitate the metabolism in cells as the conversion of substrates through intermediates to the final product can take place more rapidly and with less side-product formation. In a similar fashion, also for enzyme cascade reactions, the fusion of biocatalysts involved can be advantageous. In the present study, we investigated fusion of an alcohol dehydrogenase (ADH), an enoate reductase (ERED) and a Baeyer-Villiger monooxygenase (BVMO) to enable the synthesis of (chiral) lactones starting from unsaturated alcohols as substrates. The domain order and various linkers were studied to find optimal conditions with respect to expression levels and enzymatic activities. Best results were achieved for the ERED xenobiotic reductase B (XenB) from Pseudomonas putida and the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp., whereas none of the ADHs studied could be fused successfully. This fusion protein together with separately supplied ADH resulted in similar reaction rates in in vivo biocatalysis reactions. After 1.5 h we could detect 40% more dihydrocarvone lactone in in vivo reactions with the fusion protein and ADH then with the single enzymes.

This article offers supplementary material which is provided at the end of the article.

Keywords: alcohol dehydrogenase; Baeyer-Villiger monooxygenase; biocatalysis; enoate reductase; enzyme cascade; fusion proteins

Dedicated to Professor Romas J. Kazlauskas on the occasion of his 60th birthday.


  • Chaparro-Riggers, J.F., Rogers, T.A., Vazquez-Figueroa, E., Polizzi, K.M., and Bommarius, A.S. (2007). Comparison of three enoate reductases and their potential use for biotransformations. Adv. Synth. Catal. 349, 1521–1531.Web of ScienceGoogle Scholar

  • Chung, C.T., Niemela, S.L., and Miller, R.H. (1989). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86, 2172–2175.CrossrefGoogle Scholar

  • Donoghue, N.A., Norris, D.B., and Trudgill, P.W. (1976). The purification and properties of cyclohexanone oxygenases from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur. J. Biochem. 63, 175–192.Google Scholar

  • Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal, A.V., Prather, K.L.J., and Keasling, J.D. (2009). Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759.Web of ScienceGoogle Scholar

  • Geneious version (6.1) created by Biomatters. Available at http://www.geneious.com/.

  • Jeon, E.-Y., Baek, A.H., Bornscheuer, U., and Park, J.-B. (2015). Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl. Microbiol. Biotechnol. 99, 6267–6275.Web of ScienceGoogle Scholar

  • Karabec, M., Lyskowski, A., Tauber, K.C., Steinkellner, G., Kroutil, W., Grogan, G., and Gruber, K. (2010). Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem. Commun. 46, 6314–6316.Google Scholar

  • Li, C., Wen, A., Shen, B., Lu, J., Huang, Y., and Chang, Y. (2011). FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92.Web of ScienceGoogle Scholar

  • Li, Y., Chen, H., Qu, F., Yan, L., Li, B., Yue, J., Sun, F., Mao, Y., Zhang, J., Wu, X., et al. (2013). Fusion protein as well as coding gene and application thereof. Chinese Patent Application. CN 201310028774.Google Scholar

  • Li, B., Li, Y., Bai, D., Zhang, X., Yang, H., Wang, J., Liu, G., Yue, J., Ling, Y., Zhou, D., et al. (2014). Whole-cell biotransformation systems for reduction of prochiral carbonyl compounds to chiral alcohol in Escherichia coli. Sci. Rep. 4, 6750.CrossrefGoogle Scholar

  • Milani, M., Pesce, A., Bolognesi, M., Bocedi, A., and Ascenzi, P. (2003). Substrate channeling: molecular bases. Biochem. Mol. Biol. Educ. 31, 228–233.Google Scholar

  • Miles, E.W. (2001). Tryptophan synthase: a multienzyme complex with an intramolecular tunnel. Chem. Rec. 1, 140–151.Google Scholar

  • Miles, E.W., Rhee, S., and Davies, D.R. (1999). The molecular basis of substrate channeling. J. Biol. Chem. 274, 12193–12196.Google Scholar

  • Oberleitner, N., Peters, C., Muschiol, J., Kadow, M., Saß, S., Bayer, T., Schaaf, P., Iqbal, N., Rudroff, F., Mihovilovic, M.D., et al. (2013). An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis. ChemCatChem 5, 3524–3528.CrossrefGoogle Scholar

  • Oberleitner, N., Peters, C., Rudroff, F., Bornscheuer, U.T., and Mihovilovic, M.D. (2014). In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer-Villiger monooxygenase. J. Biotechnol. 192(Pt B), 393–399.Web of ScienceGoogle Scholar

  • Opperman, D.J. and Reetz, M.T. (2010). Towards practical Baeyer–Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability. ChemBioChem 11, 2589–2596.CrossrefWeb of ScienceGoogle Scholar

  • Pérez-Arellano, I., Carmona-Álvarez, F., Martínez, A.I., Rodríguez-Díaz, J., and Cervera, J. (2010). Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci. 19, 372–382.Web of ScienceGoogle Scholar

  • Peters, C., Kölzsch, R., Kadow, M., Skalden, L., Rudroff, F., Mihovilovic, M.D., and Bornscheuer, U.T. (2014). Identification, characterization, and application of three enoate reductases from Pseudomonas putida in in vitro enzyme cascade reactions. ChemCatChem 6, 1021–1027.CrossrefGoogle Scholar

  • Sachdev, D. and Chirgwin, J.M. (1998). Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem. Biophys. Res. Commun. 244, 933–937.Google Scholar

  • Sachdev, D. and Chirgwin, J. (1999). Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J. Protein Chem. 18, 127–136.Google Scholar

  • Schlieben, N.H., Niefind, K., Müller, J., Riebel, B., Hummel, W., and Schomburg, D. (2005). Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J. Mol. Biol. 349, 801–813.Google Scholar

  • Schmidt, S., Genz, M., Balke, K., and Bornscheuer, U.T. (2015). The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. J. Biotechnol. 214, 199–211.Web of ScienceGoogle Scholar

  • Sugimoto, M., Esaki, N., Tanaka, H., and Soda, K. (1989). A simple and efficient method for the oligonucleotide-directed mutagenesis using plasmid DNA template and phosphorothioate-modified nucleotide. Anal. Biochem. 179, 309–311.Google Scholar

  • Torres Pazmiño, D.E., Snajdrova, R., Baas, B.J., Ghobrial, M., Mihovilovic, M.D., and Fraaije, M.W. (2008). Self-sufficient Baeyer-Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. Angew. Chem. Int. Ed. 47, 2275–2278.CrossrefWeb of ScienceGoogle Scholar

  • Torres Pazmiño, D.E., Riebel, A., de Lange, J., Rudroff, F., Mihovilovic, M.D., and Fraaije, M.W. (2009). Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer–Villiger monooxygenases. ChemBioChem 10, 2595–2598.Web of ScienceCrossrefGoogle Scholar

  • van Beek, H.L., de Gonzalo, G., and Fraaije, M.W. (2012). Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties. Chem. Commun. 48, 3288–3290.CrossrefWeb of ScienceGoogle Scholar

  • van Dillewijn, P., Wittich, R.-M., Caballero, A., and Ramos, J.-L. (2008). Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida. Appl. Environ. Microbiol. 74, 6703–6708.Google Scholar

  • Vandeyar, M.A., Weiner, M.P., Hutton, C.J., and Batt, C.A. (1988). A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene 65, 129–133.CrossrefGoogle Scholar

  • Weckbecker, A. and Hummel, W. (2006). Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal. Biotransform. 24, 380–389.Google Scholar

  • Wheeldon, I., Minteer, S.D., Banta, S., Barton, S.C., Atanassov, P., and Sigman, M. (2016). Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309.Web of ScienceGoogle Scholar

  • Whitehouse, C.J.C., Bell, S.G., and Wong, L.-L. (2012). P450BM3 (CYP102A1): connecting the dots. Chem. Soc. Rev. 41, 1218–1260.Web of ScienceGoogle Scholar

  • Yachnin, B.J., Sprules, T., McEvoy, M.B., Lau, P.C., and Berghuis, A.M. (2012). The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation. J. Am. Chem. Soc. 134, 7788–7795.Web of ScienceGoogle Scholar

  • Yu, K., Liu, C., Kim, B.-G., and Lee, D.-Y. (2015). Synthetic fusion protein design and applications. Biotechnol. Adv. 33, 155–164.Web of ScienceGoogle Scholar

  • Zambianchi, F., Pasta, P., Carrea, G., Colonna, S., Gaggero, N., and Woodley, J.M. (2002). Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer–Villiger and sulfide oxidations. Biotechnol. Bioeng. 78, 489–496.Google Scholar

About the article

Received: 2016-03-15

Accepted: 2016-06-08

Published Online: 2016-06-10

Published in Print: 2017-01-01

Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0150.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pei Xu, Gao-Wei Zheng, Min-Hua Zong, Ning Li, and Wen-Yong Lou
Bioresources and Bioprocessing, 2017, Volume 4, Number 1
Katlego Siphamandla Mthethwa, Karin Kassier, Jennifer Engel, Selin Kara, Martha Sophia Smit, and Diederik Johannes Opperman
Enzyme and Microbial Technology, 2017, Volume 106, Page 11
Joerg H. Schrittwieser, Stefan Velikogne, Mélanie Hall, and Wolfgang Kroutil
Chemical Reviews, 2017
M. B. Quin, K. K. Wallin, G. Zhang, and C. Schmidt-Dannert
Org. Biomol. Chem., 2017, Volume 15, Number 20, Page 4260

Comments (0)

Please log in or register to comment.
Log in