Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 398, Issue 10

Issues

Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities

Takahisa Imamura
  • Corresponding author
  • Department of Molecular Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoji Murakami
  • Department of Urology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidetoshi Nitta
  • Department of Gastroenterological Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-21 | DOI: https://doi.org/10.1515/hsz-2016-0344

Abstract

Aeromonas sobria serine protease (ASP) is secreted from Aeromonas sobria, a pathogen causing gastroenteritis and sepsis. ASP resembles Saccharomyces cerevisiae Kex2, a member of the subtilisin family, and preferentially cleaves peptide bonds at the C-terminal side of paired basic amino acid residues; also accepting unpaired arginine at the P1 site. Unlike Kex2, however, ASP lacks an intramolecular chaperone N-terminal propeptide, instead utilizes the external chaperone ORF2 for proper folding, therefore, ASP and its homologues constitute a new subfamily in the subtilisin family. Through activation of the kallikrein/kinin system, ASP induces vascular leakage, and presumably causes edema and septic shock. ASP accelerates plasma clotting by α-thrombin generation from prothrombin, whereas it impairs plasma clottability by fibrinogen degradation, together bringing about blood coagulation disorder that occurs in disseminated intravascular coagulation, a major complication of sepsis. From complement C5 ASP liberates C5a that induces neutrophil recruitment and superoxide release, and mast cell degranulation, which are associated with pus formation, tissue injury and diarrhea, respectively. Nicked two-chain ASP also secreted from A. sobria is more resistant to inactivation by α2-macroglobulin than single-chain ASP, thereby raising virulence activities. Thus, ASP is a potent virulence factor and may participate in the pathogenesis of A. sobria infection.

Keywords: C5a; chaperone; kinin; shock; thrombin; vascular leakage

References

  • Ascencio, F., Aleljung, P., Olusanya, O., and Wadström, T. (1990). Type I and IV collagen and fibrinogen binding to Aeromonas species isolated from various infections. Zentralbl. Bakteriol. 273, 186–194.PubMedCrossrefGoogle Scholar

  • Brenner, C. and Fuller, R.S. (1992). Structural and enzymatic characterization of a purified prohormon-processing enzyme: secreted, soluble Kex2 protease. Proc. Natl. Acad. Sci. USA 89, 922–926.CrossrefGoogle Scholar

  • Chang, J.-Y. (1986). The structures and proteolytic specificities of autolysed human thrombin. Biochem. J. 240, 797–802.CrossrefPubMedGoogle Scholar

  • Chang, A.K., Kim, H.Y., Park, J.E., Acharya, P., Park, I.-S., Yoon, S.M., You, H.J., Hahm, K.-S., Park, J.K., and Lee, J.S. (2005). Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J. Bacteriol. 187, 6909–6916.PubMedCrossrefGoogle Scholar

  • Chung, D.W., Fujikawa, K., MacMullen, B.A., and Davie, E.W. (1986). Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry 25, 2410–2417.CrossrefPubMedGoogle Scholar

  • Cochrane, C.G. and Griffin, J.H. (1982). The biochemistry and pathophysiology of the contact system of plasma. Adv. Immunol. 33, 241–306.CrossrefPubMedGoogle Scholar

  • Coleman, G. and Whitby, P.W. (1993). A comparison of amino acid sequence of the serine protease of the fish pathogen Aeromonas salmonicida with those of other subtilisin-type enzymes relative to their substrate-binding sites. J. Gen. Microbiol. 139, 245–249.CrossrefPubMedGoogle Scholar

  • Collet, J.-P., Moen, J.L., Veklich, Y.I., Gorkun, O.V., Lord, S.T., Montalescot, G., and Wiesel, J.W. (2005). The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 106, 3824–3830.CrossrefPubMedGoogle Scholar

  • Daily, O.P., Joseph, S.W., Coolbaugh, J.C., Walker, R.I., Merrell, B.R., Rollins, D.M., Seidler, R.J., Colwell, R.R., and Lissner, C.R. (1981). Association of Aeromonas sobria with human infection. J. Clin. Microbiol. 13, 769 –777.PubMedGoogle Scholar

  • Degen, S.F.J., MacGillivray, R.T.A., and Davie, E.W. (1983). Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry 22, 2087–2097.PubMedCrossrefGoogle Scholar

  • de Bruijn, M.H.L. and Fey, G.H. (1985). Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl. Acad. Sci. USA 82, 708–712.CrossrefGoogle Scholar

  • Deutsch, S.F. and Wedzina, W. (1997). Aeromonas sobria- associated left-sided segmental colitis. Am. J. Gastroenterol. 92, 2104–2106.PubMedGoogle Scholar

  • DiScipio, R.G., Smith, C.A., Müller-Eberhard, H.J., and Hugli, T.E. (1983). The activation of human complement component C5 by a fluid phase C5 convertase. J. Biol. Chem. 258, 10629–10636.PubMedGoogle Scholar

  • DiScipio, R.G., Daffern, P.J., Kawahara, M., Pike, R., Travis, J., and Hugli, T.E. (1996). Cleavage of human complement component C5 by cysteine proteinases from Porphyromonas gingivalis: prior oxidation of C5 augments proteinase digestion of C5. Immunology 87, 660–667.CrossrefPubMedGoogle Scholar

  • Doyle, M.F. and Mann, K.G. (1990) Multiple active forms of thrombin. IV. Relative activities of meizothrombins. J. Biol. Chem. 265, 10693–10701.PubMedGoogle Scholar

  • Duthie, R., Ling, T.W., Cheng, A.F.B., and French, G.L. (1995). Aeromonas septicemia in Hong Kong: species distribution and associated diseases. J. Infect. Dis. 30, 241–244.Google Scholar

  • Esteve, C. and Birbeck, T.H. (2004). Secretion of haemolysins and proteases by Aeromonas hydrophila EO63: separation and characterization of the serine protease (caseinase) and the metalloprotease (elastase). J. Appl. Microbiol. 96, 994–1001.CrossrefPubMedGoogle Scholar

  • Farraye, F.A., Peppercorn, M.A., Ciano, P.S., and Kavesh, W.N. (1989). Segmental colitis associated with Aeromonas hydrophila. Am. J. Gastroenterol. 84, 436–438.PubMedGoogle Scholar

  • Fernandez, H.N. and Hugli, T.E. (1978). Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin: polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. J. Biol. Chem. 253, 6955–6964.PubMedGoogle Scholar

  • Fernandez, H.N., Henson, P.M., Otani, A., and Hugli, T.E. (1978). Chemotactic response to human C3a and C5a anaphylatoxins. 1. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo cinditions. J. Immunol. 120, 109–115.Google Scholar

  • Fittschen, C., Sandhaus, R.A., Worthen, G.S., and Henson, P.M. (1988). Bacterial lipopolysaccharide enhances chemoattractant-induced elastase secretion by human neutrophils. J. Leukoc. Biol. 43, 547–556.PubMedGoogle Scholar

  • Goldstein, I.M. and Weissmann, G. (1974). Generation of C5-derived lysosomal enzyme releasing activity (C5a) by lysates of leukocyte lysosomes. J. Immunol. 113, 1583–1588.PubMedGoogle Scholar

  • Grøn, H., Meldal, M., and Breddam, K. (1992). Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry 31, 6011–6018.PubMedCrossrefGoogle Scholar

  • Guo, R.F., Riedemann, N.C., Bernacki, K.D., Sarma, V.J., Laudes, I.J., Reuben, J.S., Younkin, E.M., Neff, T.A., Paulauskis, J.D., Zetoune, F.S., et al. (2003). Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB J. 13, 1889–1891.Google Scholar

  • Halkier, T. (1991). Mechanisms in Blood Coagulation, Fibrinolysis and the Complement System (Cambridge, UK: Cambridge University Press).Google Scholar

  • Harpel, P.C. (1973). Studies on human plasma α2-macroglobulin-enzyme interactions: evidence for proteolytic modification of the subunit chain structure. J. Exp. Med. 138, 508–521.CrossrefGoogle Scholar

  • Harris, T.O., Shelver, D.W., Bohnsack, J.F., and Rubens, C.E. (2003). A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J. Clin. Invest. 111, 61–70.PubMedCrossrefGoogle Scholar

  • Haycox, C.L., Odland, P.D., Coltrera, M.D., and Raugi, G.J. (1995). Indications and complications of medicinal leech therapy. J. Am. Acad. Dermatol. 33, 1053–1055.CrossrefPubMedGoogle Scholar

  • Herwald, H., Collin, M., Müller-Esterl, W., and Björck, L. (1996). Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184, 665–673.CrossrefGoogle Scholar

  • Hesselvik, J.F., Blombäck, M., Brodin, B., and Maller, R. (1989). Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit. Care Med. 17, 724–733.PubMedCrossrefGoogle Scholar

  • Holyoak, T., Wilson, M.A., Fenn, T.D., Kettner, C.A., Petsko, G.A., Fuller, R.S., and Ringe, D. (2003). 2.4 Å resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 42, 6709–6718.CrossrefPubMedGoogle Scholar

  • Huber-Lang, M.S., Younkin, E.M., Sarma, J.V., McGuire, S.R., Lu, K.T., Guo, R.F., Padgaonkar, V.A., Curnutte, J.T., Erickson, R., and Ward, P.A. (2002). Complement-induced impairment of innate immunity during sepsis. J. Immunol. 169, 3223–3231.PubMedCrossrefGoogle Scholar

  • Husslein, V., Bergbauer, H., and Chakraborty, T. (1991). Studies on aerolysin and a serine protease from Aeromonas trota sp. nov. Experientia 47, 420 – 421.Google Scholar

  • Ikeda, K., Nagasawa, K., Horiuchi, T., Tsuru, T., Nishizaka, H., and Niho, Y. (1997). C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 77, 394–398.PubMedGoogle Scholar

  • Imamura, T. (2014). Staphopains in Staphylococcus aureus bacteremia: virulence activities related to the onset of septic shock, coagulation disorders, and infectious endocarditis. J. Oral Biosci. 56, 81–85.CrossrefGoogle Scholar

  • Imamura, T., Yamamoto, T., and Kambara, T. (1984). Guinea pig plasma kallikrein as a vascular permeability enhancement factor: its dependence on kinin generation and regulation mechanisms in vivo. Am. J. Pathol. 115, 92–101.PubMedGoogle Scholar

  • Imamura, T., Potempa, J., Pike, R.N., and Travis, J. (1995). Effect of free and vesicle-bound cysteine proteinases of Porphyromonas gingivalis on plasma clot formation: implications for bleeding tendency at periodontitis sites. Infect. Immun. 63, 4877–4882.PubMedGoogle Scholar

  • Imamura, T., Banbula, A., Pereira, P.J.B., Travis, J., and Potempa, J. (2001) Activation of human prothrombin by arginine-specific cysteine proteases (gingipain R) from Porphyromonas gingivalis. J. Biol. Chem. 276, 18984–18991.PubMedCrossrefGoogle Scholar

  • Imamura, T., Tanase, S., Szmyd, G., Kozik, A, Travis, J., and Potempa, J. (2005). Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J. Exp. Med. 201, 1669 –1676.CrossrefGoogle Scholar

  • Imamura, T., Kobayashi, H., Khan, R., Nitta, H., and Okamoto, K. (2006). Induction of vascular leakage and blood pressure lowering through kinin release by a serine protease from Aeromonas sobria. J. Immunol. 177, 8723–8729.PubMedCrossrefGoogle Scholar

  • Imamura, T., Nitta, H., Wada, Y., Kobayashi, H., and Okamoto, K. (2008). Impaired plasma clottability induction through fibrinogen degradation byASP, a serine protease released from Aeromonas sobria. FEMS Microbiol. Lett. 284, 35–42.PubMedCrossrefGoogle Scholar

  • Janda, J.M. (1991). Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4, 397–410.CrossrefPubMedGoogle Scholar

  • Janda, J.M. and Brenden, R. (1987). Importance of Aeromonas sobria in Aeromonas bacteremia. J. Infect. Dis. 155, 589–591.CrossrefPubMedGoogle Scholar

  • Janda, J.M. and Duffey, P.S. (1988). Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev. Infect. Dis. 10, 980–997.CrossrefPubMedGoogle Scholar

  • Janda, J.M. and Abbott, S.L. (1996). Human pathogens. In: The Genus Aeromonas. B. Austin, M. Altwegg, P.J. Gosling and S. Joseph, eds. (Chichester, UK: John Wiley & Sons), pp. 151–173.Google Scholar

  • Janda, J.M. and Abbott, S.L. (1998). Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 27, 332–344.CrossrefPubMedGoogle Scholar

  • Janda, J.M. and Abbott, S.L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73.CrossrefPubMedGoogle Scholar

  • Janda, J.M., Reitano, M., and Bottone, E.J. (1984). Biotyping of Aeromonas isolates as a correlate to delineating a species-associated disease spectrum. J. Clin. Microbiol. 19, 44–47.PubMedGoogle Scholar

  • Janda, J.M., Guthertz, L.S., Kokka, R.P., and Shimada, T. (1994). Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin. Infect. Dis. 19, 77–83.CrossrefPubMedGoogle Scholar

  • Janda, J.M., Abbott, S.L., Khashe, S., Kellogg, G.H., and Shimada, T. (1996). Further studies on biochemical characteristics and serologic properties of the genus Aeromonas. J. Clin. Microbiol. 34, 1930–1933.PubMedGoogle Scholar

  • Jones, B.L. and Wilcox, M.H. (1995). Aeromonas infection and their treatment. J. Antimicrob. Chemother. 35, 453–461.CrossrefGoogle Scholar

  • Kalter, E.S., Daha, M.R., ten Cate, J.W., Verhoef, J., and Bouma, B.N. (1985). Activation and inhibition of Hageman factor-dependent pathways and the complement system in uncomplicated bacteremia or bacterial shock. J. Infect. Dis. 151, 1019–1027.CrossrefPubMedGoogle Scholar

  • Kaminishi, H., Hamatake, H., Cho, T., Tamaki, T., Suenaga, N., Fujii, T., Hagihara, Y., and Maeda, H. (1994). Activation of blood clotting factors by microbial proteases. FEMS Microbiol. Lett. 121, 327–332.CrossrefPubMedGoogle Scholar

  • Kikuchi, Y. and Kaplan, A.P. (2002). A role for C5a in augmenting IgG-dependent histamine release from basophils in chronic urticaria. J. Allergy Clin. Immunol. 109, 114–118.PubMedCrossrefGoogle Scholar

  • Kobayashi, H., Takahashi, E., Oguma, K., Fujii, Y., Yamanaka, H., Negishi, T., Arimoto-Kobayashi, S., Tsuji, T., and Okamoto, K. (2006). Cleavage specificity of the serine protease of Aeromonas sobria, a member of the kexin family of subtilases. FEMS Microbiol. Lett. 256, 165–170.CrossrefPubMedGoogle Scholar

  • Kobayashi, H., Utsunomiya, H, Yamanaka, H., Sei, Y., Katunuma, N., Okamoto, K., and Tsuge, H. (2009a). Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor. J. Biol. Chem. 284, 27655–2763.CrossrefGoogle Scholar

  • Kobayashi, H., Tateishi, A., Tsuge, H., Takahashi, E., Okamoto, K., and Yamanaka, H. (2009b). The carboxy-terminal tail of Aeromonas sobria serine protease is associated with the chaperone. Microbiol. Immunol. 53, 647–657.CrossrefGoogle Scholar

  • Kobayashi, H., Yoshida, T., Miyakawa, T., Tashiro, M., Okamoto, K., Yamanaka, H., Tanokura, M., and Tsuge, H. (2015). Structural basis for action of the external chaperone for a propeptide-deficient serine protease from Aeromonas sobria. J. Biol. Chem. 290, 11130–11143.CrossrefPubMedGoogle Scholar

  • Kollman, J.M., Pandi, L., Sawaya, M.R., Riley, M., and Doolittle, R.F. (2009). Crystal structure of human fibrinogen. Biochemistry 48, 3877–3886.PubMedCrossrefGoogle Scholar

  • Konteatis, Z.D., Siciliano, S.J., Riper, G.V., Molineaux, C.J., Pandya, S., Fischer, P., Rosen, H., Mumford, R.A., and Springer, M.S. (1994). Development of C5a receptor antagonists: differential loss of functional responses. J. Immunol. 153, 4200–4205.PubMedGoogle Scholar

  • Kurachi, K. and Davie, E.W. (1982). Isolation and characterization of a cDNA clone for human factor IX. Proc. Natl. Acad. Sci. USA 79, 6461–6464.CrossrefGoogle Scholar

  • Leeb-Lundberg, L.M.F., Marceau, F., Müller-Esterl, W., Pettibone, D.J., and Zuraw. B.L. (2005). International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57: 27–77.PubMedCrossrefGoogle Scholar

  • Levi, M. (2001). Pathogenesis and treatment of disseminated intravascular coagulation in the septic patient. J. Crit. Care 16, 167–177.CrossrefPubMedGoogle Scholar

  • Levi, M. and ten Cate, H. (1999). Disseminated intravascula coagulation. N. Engl. J. Med. 341, 586–592.CrossrefPubMedGoogle Scholar

  • Leytus, S.P., Chung, D.W., Kisiel, W., Sasagawa, T., Howald, W.N., Kwa, E.Y., and Weinstein, B. (1984). Characterization of a cDNA coding for human blood coagulation factor X. Proc. Natl. Acad. Sci. USA 81, 3699–3702.CrossrefGoogle Scholar

  • Lin, S.-H, Shieh, S.-D., Lin, Y.-F., De Bauer, E., Van Landuyt, H.W., Gordts, B., and Boelaert, J.R. (1996). Fatal Aeromonas hydrophila bacteremia in a hemodialysis patient treated with deferoxamine. Am. J. Kidney Dis. 27, 733–735.CrossrefGoogle Scholar

  • Mann, K.G.R. and Lundblad, L. (1987). Biochemistry of thrombin. In: Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 2nd edition. (R.W. Colman, J. Hirsh and V.J. Marder, eds. (Philadelphia, PA: JB Lippincott), pp. 148–161.Google Scholar

  • Marder, S.R., Chenoweth, D.E., Goldstein, I.M., and Perez, H.D. (1985). Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg. J. Immunol. 134, 3325–3331.PubMedGoogle Scholar

  • Marshall, J.C. (1997). Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction and anticoagulant mechanisms in sepsis and endotoxaemia. Eur. J. Clin. Invest. 27, 3–9.Google Scholar

  • Maruo, K., T. Akaike, T., Inada, Y., Ohkubo, I., Ono, T., and H. Maeda. (1993). Effect of microbial and mite proteases on low and high molecular weight kininogens: generation of kinin and inactivation of thiol protease inhibitory activity. J. Biol. Chem. 268, 17711–17715.PubMedGoogle Scholar

  • Maruo, K., Akaike, T., Ono, T., Okamoto, T., and Maeda, H. (1997). Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J. Allergy Clin. Immunol. 100, 253–260CrossrefPubMedGoogle Scholar

  • Mollnes, T.E., Brekke, O.L., Fung, M., Fure, H., Christiansen, D., Bergseth, G., Videm, V., Lappegård, K.T., Köhl, J., and Lambris, J.D. (2002). Essential role of the C5a receptor in E. coli induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100, 1869–1877.Google Scholar

  • Muhlfelder, T.W., Niemetz, J., Kreutzer, D., Beebe, D., Ward, P.A., and Rosenfeld, S.I. (1979). C5 chemotactic fragment induces leukocyte production of tissue factor activity: a link between complement and coagulation. J. Clin. Invest. 63, 147–150.CrossrefPubMedGoogle Scholar

  • Müller-Esterl, W. (1986). Kininogens. In: Methods of Enzymatic Analysis: Proteins and Peptides, Vol. 9, 3rd Ed., H.U. Bergmeyer, J. Bergmeyer and M. Graßl, eds. (Weinheim, Germany: VCH), pp. 304–316.Google Scholar

  • Murakami, Y., Wada, Y., Kobayashi, H., Hasegawa, M., Okamoto, K., Eto, M., and Imamura, T. (2012a). The tail nick augments Aeromonas sobria serine protease (ASP) activity in plasma through retarding inhibition by α2-macroglobulin. FEBS Lett. 586, 3613–3617.CrossrefGoogle Scholar

  • Murakami, Y., Wada, Y., Kobayashi, H., Irie, A., Hasegawa, M., Yamanaka, H., Okamoto, K., Eto, M., and Imamura, T. (2012b). Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Biol. Chem. 393, 1193–1200.Google Scholar

  • Nakae, H., Endo, S., Inada, K., Takakuwa, T., Kasai, T., and Yoshida, M. (1994). Serum complement levels and severity of sepsis. Res. Commun. Chem. Pathol. Pharmacol. 84, 189–195.PubMedGoogle Scholar

  • Nemerson, Y. (1988). Tissue factor and hemostasis. Blood 71, 1–8.PubMedGoogle Scholar

  • Nitta, H., Kobayashi, H., Irie, A., Baba, H., Okamoto, K., and Imamura, T. (2007). Activation of prothrombin by ASP, a serine protease released from Aeromonas sobria. FEBS Lett. 581, 5935–5939.PubMedCrossrefGoogle Scholar

  • Nitta, H., Imamura, T., Wada, Y., Irie, A., Kobayashi, H., Okamoto, K., and Baba, H. (2008). Production of C5a by ASP, a Serine Protease Released from Aeromonas sobria. J. Immunol. 181, 3602–3608.CrossrefPubMedGoogle Scholar

  • Nomura, T., Fujii, Y., Yamanaka, Y., Kobayashi, H., and Okamoto, K. (2002). The protein encoded at the 30 end of the serine protease gene of Aeromonas sobria functions as a chaperone in the production of the protease. J. Bacteriol. 184, 7058–7061.CrossrefGoogle Scholar

  • Ohbayashi, T., Irie, A., Murakami, Y., Nowak, M., Potempa, J., Nishimiura, Y., Shinohara, M., and Imamura, T. (2011). Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157, 786–792.CrossrefPubMedGoogle Scholar

  • Okamoto, K., Nomura, T., Hamada, M., Fukuda, T., Noguchi, Y., and Fujii, Y. (2000). Production of serine protease of Aeromonas sobria is controlled by the protein encoded by the gene lying adjacent to the 3′ end of the protease gene. Microbiol. Immunol. 44, 787–798.PubMedCrossrefGoogle Scholar

  • Pixley, R.A., DeLa Cadena, R.A., Page, J.D., Kaufman, N., Wyshock, E.G., R. Colman, W., Chang, A., and Taylor, Jr, F.B. (1992). Activation of the contact system in lethal hypotensive bacteremia in a baboon model. Am. J. Pathol. 140, 897–906.Google Scholar

  • Pixley, R.A., DeLa Cadena, R.A., Page, J.D., Kaufman, N., Wyshock, E.G., Chang, A., Taylor, Jr., F.B., and Colman, R.W. (1993). The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia: in vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J. Clin. Invest. 91, 61–68.CrossrefPubMedGoogle Scholar

  • Pixley, R.A., Zellis, S., Bankes, P., DeLa Cadena, R.A., Page, J.D., Scott, C.F., Kappelmayer, J., Wyshock, E.G., Kelly, J.J., and Colman, R.W. (1995). Prognostic value of assessing contact system activation and factor V in systemic inflammatory response syndrome. Crit. Care Med. 23, 41–51.CrossrefPubMedGoogle Scholar

  • Pizzo, S.V., Schwartz, M.L., Hill, R.L., and McKee, P.A. (1972). The effect of plasmin on the subunit structure of human fibrinogen. J. Biol. Chem. 247, 636–645.PubMedGoogle Scholar

  • Regoli, D. and Barabé, J. (1980). Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32, 1–46.PubMedGoogle Scholar

  • Rhaleb, N.-E., Rouissi, N., Jukic, D., Regoli, D., Henke, S., Breipohl, G., and Knolle, J. (1992). Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-Arg-(Hyp3, Thi5, D-Tic7, Oic8)bradykinin). Eur. J. Pharmacol. 210, 115–120.CrossrefPubMedGoogle Scholar

  • Rheinnecker, M., Baker, G., Eder, J., and Fersht, A.R. (1993). Engineering a novel spcificity in subtilisin BPN’. Biohemistry 32, 1199–1203.CrossrefGoogle Scholar

  • Rockwell, M. and Fuller, R.S. (1998). Interplay between S1 and S4 subsites in kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biohemistry 37, 3386–3391.CrossrefGoogle Scholar

  • Rockwell, N.C., Krysan, D.J., Komiyama, T., and Fuller, R.S. (2002). Precursor processing by Kex2/Furin proteases. Chem. Rev. 102, 4525–4548.CrossrefPubMedGoogle Scholar

  • Rosing, J., Zwaal, R.F.A., and Tans, G. (1986). Formation of meizothrombin as intermediate in factor Xa-catalyzed prothrombin activation. J. Biol. Chem. 261, 4224–4228.PubMedGoogle Scholar

  • Sacks, T., Moldow, C.F., Craddock, P.R., Bowers, T.K., and Jacob, H.S. (1978). Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: an in vitro model of immune vascular damage. J. Clin. Invest. 61, 1161–1167.CrossrefGoogle Scholar

  • Schiavano, G.F., Bruscolini, F., Albano, A., and Brandi, G. (1998). Virulence factors in Aeromonas spp. and their association with gastrointestinal disease. New Microbiol. 21, 23–30.PubMedGoogle Scholar

  • Siezen, R.J. and Leunissen, J.A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523.PubMedGoogle Scholar

  • Smith-Erichsen, N., Aasen, A.O., Gallimore, M.J., and Amundsen, E. (1982). Studies of components of the coagulation systems in normal individuals and septic shock patients. Circ. Shock 9, 491–497.Google Scholar

  • Takagaki, Y., Kitamura, N., and Nakanishi, S. (1985). Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. J. Biol. Chem. 260, 8601–8609.PubMedGoogle Scholar

  • Wegrzynowicz, Z., Heczko, P.B., Drapeau, G.R., Jeljaszewicz, J., and Pulverer, G. (1981). Prothrombin activation by a metalloprotease from Staphylococcus aureus. J. Clin. Microbiol. 12, 138–139.Google Scholar

  • Wirth, K., Hock, F.J., Albus, U., Linz, W., Alpermann, H.G., Anagnostopoulos, H., Henke, S., Breipohl, G., Knolle, J., and Schölkens, B.A. (1991). Hoe 140 a new potent and long acting bradykinin-antagonist: in vivo studies. Br. J. Pharmacol. 102, 774–777.CrossrefPubMedGoogle Scholar

  • Wingrove, J.A., DiScipio, R.G., Chen, Z., Potempa, J., Travis, J., and Hugli, T.E. (1992). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J. Biol. Chem. 267, 18902–18907.PubMedGoogle Scholar

  • Wöhrl, S., Hemmer, W., Focke, M., Rappersberger, K., and Jarisch, R. (2004). Histamine intolerance-like symptoms in healthy volunteers after oral provocation with liquid histamine. Allergy Asthma Proc. 25, 305–311.PubMedGoogle Scholar

  • Wuepper, K.D. and Cochrane, C.G. (1972). Plasma prekallikrein: isolation, characterization, and mechanism of activation. J. Exp. Med. 135, 1–20.CrossrefPubMedGoogle Scholar

  • Yokoyama, R., Fujii, Y., Noguchi, Y., Nomura, T., Akita, M., Setsu, K., Yamamoto, S., and Okamoto, K. (2002). Physicochemical and biological properties of an extracellular serine protease of Aeromonas sobria. Microbiol. Immunol. 46, 383–390.PubMedCrossrefGoogle Scholar

  • Zhu, X.L., Ohta, Y., Jordan, F., and Inouye, M. (1989). Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483–484.CrossrefGoogle Scholar

About the article

Received: 2016-12-29

Accepted: 2017-04-07

Published Online: 2017-04-21

Published in Print: 2017-09-26


Citation Information: Biological Chemistry, Volume 398, Issue 10, Pages 1055–1068, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0344.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mariana de Melo Rodrigues Sobral, Camila Barreto, Kayo Bianco, Samara Sant'Anna de Oliveira, and Maysa Mandetta Clementino
Journal of Water and Health, 2019, Volume 17, Number 3, Page 380

Comments (0)

Please log in or register to comment.
Log in