Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 398, Issue 2


Glutathione and glutathione derivatives in immunotherapy

Alessandra Fraternale
  • Corresponding author
  • Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi, 2, I-61029 Urbino, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Serena Brundu
  • Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi, 2, I-61029 Urbino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mauro Magnani
  • Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi, 2, I-61029 Urbino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-11 | DOI: https://doi.org/10.1515/hsz-2016-0202


Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment, which is important for several cellular functions. Altered intracellular GSH levels are observed in a wide range of pathologies, including several viral infections, as well as in aging, all of which are also characterized by an unbalanced Th1/Th2 immune response. A central role in influencing the immune response has been ascribed to GSH. Specifically, GSH depletion in antigen-presenting cells (APCs) correlates with altered antigen processing and reduced secretion of Th1 cytokines. Conversely, an increase in intracellular GSH content stimulates IL-12 and/or IL-27, which in turn induces differentiation of naive CD4+ T cells to Th1 cells. In addition, GSH has been shown to inhibit the replication/survival of several pathogens, i.e. viruses and bacteria. Hence, molecules able to increase GSH levels have been proposed as new tools to more effectively hinder different pathogens by acting as both immunomodulators and antimicrobials. Herein, the new role of GSH and its derivatives as immunotherapeutics will be discussed.

Keywords: APC; glutathione; pathogens; pro-drugs; Th1/Th2


  • Afkarian, M., Sedy, J.R., Yang, J., Jacobson, N.G., Cereb, N., Yang, S.Y., Murphy, T.L., and Murphy, K.M. (2002). T-bet is a STAT1-induced regulator for IL-12R expression in naïve CD4+ T cells. Nat. Immunol. 3, 549–557.Google Scholar

  • Aggarwal, B.B. (1998). Human Cytokines (London: Blackwell Science).Google Scholar

  • Alam, K., Ghousunnissa, S., Nair, S., Valluri, V.L., and Mukhopadhyay, S. (2010). Glutathione-redox balance regulates c-rel-driven IL-12 production in macrophages: possible implications in antituberculosis immunotherapy. J. Immunol. 184, 2918–2929.Google Scholar

  • Allan, E.R., Tailor, P., Balce, D.R., Pirzadeh, P., McKenna, N.T., Renaux, B., Warren, A.L., Jirik, F.R., and Yates, R.M. (2014). NADPH oxidase modifies patterns of MHC class II-restricted epitopic repertoires through redox control of antigen processing. J. Immunol. 192, 4989–5001.Google Scholar

  • Allen, M., Bailey, C., Cahatol, I., Dodge, L., Yim, J., Kassissa, C., Luong, J., Kasko, S., Pandya, S., and Venketaraman V. (2015). Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front. Immunol. 6, 508.Google Scholar

  • Anderberg, S.J., Newton, G.L., and Fahey, R.C. (1998). Micothiol biosynthesis and metabolism; cellular levels of potential intermediates in the biosynthesis and degradation of mycothiol in Mycobacterium smegmatis. J. Biol. Chem. 273, 30391–30397.Google Scholar

  • Anderson, M.E., Powrie, F., Puri, R.N., and Meister, A. (1985). Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239, 538–548.Google Scholar

  • Anderson, M.E., Nilsson, M., and Sims, N.R. (2004). Glutathione monoethyl ester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem. Int. 44, 153–159.Google Scholar

  • Aquilano, K., Baldelli, S., and Ciriolo, M.R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol. 5, 196.Google Scholar

  • Arango, D.G. and Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491.Google Scholar

  • Ates, B., Abraham, L., and Ercal, N. (2008). Antioxidant and free radical scavenging properties of Nacetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic. Res. 42, 372–377.Google Scholar

  • Aukrust, P., Müller, F., Svardal, A.M., Ueland, T., Berge, R.K., and Froland, S.S. (2003). Disturbed glutathione metabolism and decreased antioxidant levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy-potential immunomodulatory effects of antioxidants. J. Infect. Dis. 188, 232–238.Google Scholar

  • Aw, D., Silva, A.B., and Palmer, D.B. (2007). Immunosenescence: emerging challenges for an ageing population. Immunology 120, 435–446.Google Scholar

  • Balikò, Z., Szereday, L., and Szekeres-Bartho, J. (1998). Th2 biased immune response in cases with active M. tb infection and tuberculin anergy. FEMS Immunol. Med. Microbiol. 22, 199–204.Google Scholar

  • Balkwill, F. (2000). The Cytokine Network (Oxford: Oxford University Press).Google Scholar

  • Ballatori, N., Krance, S.M., Notenboom, S., Shi, S., Tieu, K., and Hammond, C.L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem. 390, 191–214.Google Scholar

  • Bermudez, L.E., Wu, M., and Young, L.S. (1995). Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium. Infect. Immun. 63, 4099–4104.Google Scholar

  • Biswas, S., Chida, A.S., and Rahman, I. (2006). Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem. Pharmacol. 71, 551–564.Google Scholar

  • Buhl, R., Jaffe, H.A., Holroyd, K.J., Wells, F.B., Mastrangeli, A., Saltini, C., Cantin, A.M., and Crystal, R.G. (1989). Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2, 1294–1298.Google Scholar

  • Cacciatore, I., Cornacchia, C., Pinnen, F., Mollica, A., and Di Stefano, A. (2010). Prodrug approach for increasing cellular glutathione levels. Molecules 15, 1242–1264.Google Scholar

  • Cai, J., Chen, Y., Seth, S., Furukawa, S., Compans, R.W., and Jones, D.P. (2003). Inhibition of influenza infection by glutathione. Free Radic. Biol. Med. 34, 928–936.Google Scholar

  • Cappiello, M., Amodeo, P., Mendez, B.L., Scaloni, A., Vilardo, P.G., Cecconi, I., Dal Monte, M., Banditelli, S., Talamo, F., Micheli, V., et al. (2001). Modulation of aldose reductase activity through S-thiolation by physiological thiols. Chem. Biol. Interact. 130132, 597–608.Google Scholar

  • Ciriolo, M.R., Palamara, A.T., Incerpi, S., Lafavia, E., Buè, M.C., De Vito, P., Garaci, E., and Rotilio, G. (1997). Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J. Biol. Chem. 272, 2700–2708.Google Scholar

  • Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R., and Wearsch, P.A. (2005). Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157.Google Scholar

  • Crotzer, V.L. and Blum, J.S. (2009). Autophagy and its role in MHC-mediated antigen presentation. J. Immunol. 182, 3335–3341.Google Scholar

  • Denis, M. (1994). Interleukin-12 (IL-12) augments cytolytic activity of natural killer cells toward Mycobacterium tuberculosis-infected human monocytes. Cell. Immunol. 156, 529–536.Google Scholar

  • Desideri, E., Filomeni, G., and Ciriolo, M.R. (2012). Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 8, 1769–1781.Google Scholar

  • Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., and Ansel, K.M. (2007). Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153.Google Scholar

  • Dobashi, K., Aihara, M., Araki, T., Shimizu, Y., Utsugi, M., Iizuka, K., Murata, Y., Hamuro, J., Nakazawa, T., and Mori, M. (2001). Regulation of LPS induced IL-12 production by IFN-γ and IL-4 through intracellular glutathione status in human alveolar macrophages. Clin. Exp. Immunol. 124, 290–296.Google Scholar

  • Dröge, W. (2002). Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp. Gerontol. 37, 1333–1345.Google Scholar

  • Duh, E.J., Maury, W.J., Folks, T.M., Fauci, A.S., and Rabson, A.B. (1989). Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc. Natl. Acad. Sci. USA 86, 5974–5978.Google Scholar

  • Ensoli, F., Cafaro, A., Casabianca, A., Tripiciano, A., Bellino, S., Longo, O., Francavilla, V., Picconi, O., Sgadari, C., Moretti, S., et al. (2015). HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology 12, 33.Google Scholar

  • Farrar, J.D., Asnagli, H., and Murphy, K.M. (2002). T helper subset development: roles of instruction, selection, and transcription. J. Clin. Invest. 109, 431–435.Google Scholar

  • Fraternale, A., Casabianca, A., Orlandi, C., Cerasi, A., Chiarantini, L., Brandi, G., and Magnani, M. (2002). Macrophage protection by addition of glutathione (GSH)-loaded erythrocytes to AZT and DDI in a murine AIDS model. Antiviral Res. 56, 263–272.Google Scholar

  • Fraternale, A., Paoletti, M.F., Casabianca, A., Orlandi, C., Schiavano, G.F., Chiarantini, L., Clayette, P., Oiry, J., Vogel, J.U., Cinatl, J.Jr., et al. (2008). Inhibition of murine AIDS by pro-glutathione (GSH) molecules. Antiviral Res. 77, 120–127.Google Scholar

  • Fraternale, A., Paoletti, M.F., Casabianca, A., Nencioni, L., Garaci, E., Palamara, A.T., and Magnani, M. (2009). GSH and analogs in antiviral therapy. Mol. Aspects Med. 30, 99–110.Google Scholar

  • Fraternale, A., Paoletti, M.F., Dominici, S., Caputo, A., Castaldello, A., Millo, E., Brocca-Cofano, E., Smietana, M., Clayette, P., Oiry, J., et al. (2010). The increase in intra-macrophage thiols induced by new pro-GSH molecules directs the Th1 skewing in ovalbumin immunized mice. Vaccine 28, 7676–7682.Google Scholar

  • Fraternale, A., Paoletti, M.F, Dominici, S., Buondelmonte, C., Caputo, A., Castaldello, A., Tripiciano, A., Cafaro, A., Palamara, A.T., Sgarbanti, R., et al. (2011). Modulation of Th1/Th2 immune responses to HIV-1 Tat by new pro-GSH molecules. Vaccine 29, 6823–6829.Google Scholar

  • Fraternale, A., Crinelli, R., Casabianca, A., Paoletti, M.F., Orlandi, C., Carloni, E., Smietana, M., Palamara, A.T., and Magnani, M. (2013). Molecules altering the intracellular thiol content modulate NF-κB and STAT-1/IRF-1 signalling pathways and IL-12 p40 and IL-27 p28 production in murine macrophages. PLoS One 8, e57866.Google Scholar

  • Fraternale, A., Brundu, S., and Magnani, M. (2015). Polarization and repolarization of macrophages. J. Clin. Cell. Immunol. 6, 319.Google Scholar

  • Frosch, S., Bonifas, U., Eck, H.P., Bockstette, M., Droege, W., Rüde, E., and Reske-Kunz A.B. (1993). The efficient bovine insulin presentation capacity of bone marrow-derived macrophages activated by granulocyte-macrophage colony-stimulating factor correlates with a high level intracellular reducing thiols. Eur. J. Immunol. 23, 1430–1434.Google Scholar

  • Gainey, D., Short, S., and McCoy, K. (1996). Intracellular location of cysteine transport activity correlates with productive-processing of antigen disulfide. J. Cell. Physiol. 168, 248–254.Google Scholar

  • Garaci, E., Palamara, A.T., Di Francesco, P., Favalli, C., Ciriolo, M.R., and Rotilio, G. (1992). Glutathione inhibits replication and expression of viral proteins in cultured cells infected with Sendai virus. Biochem. Biophys. Res. Commun. 188, 1090–1096.Google Scholar

  • Garaci, E., Palamara, A.T., Ciriolo, M.R., D’Agostini, C., Abdel-Latif, M.S., Aquaro, S., Lafavia, E., and Rotilio, G. (1997). Intracellular GSH content and HIV replication in human macrophages. J. Leukoc. Biol. 62, 54–59.Google Scholar

  • Giral, P., Jacob, N., Dourmap, C., Hansel, B., Carrié, A., Bruckert, E., Girerd, X., and Chapman, M.J. (2008). Elevated gammaglutamyltransferase activity and perturbed thiol profile are associated with features of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 587–593.Google Scholar

  • Grinberg, L., Fibach, E., Amer, J., and Atlas, D. (2005). N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic. Biol. Med. 38, 136–145.Google Scholar

  • Grubeck-Loebenstein, B. and Wick, G. (2002). The ageing of the immune system. Adv. Immunol. 80, 243–284.Google Scholar

  • Grubeck-Loebenstein, B., Della Bella, S., Iorio, A.M., Michel, J.P., Pawelec, G., and Solana, R. (2009). Immunosenescence and vaccine failure in the elderly. Aging Clin. Exp. Res. 21, 201–209.Google Scholar

  • Guerra, C., Morris, D., Sipin, A., Kung, S., Franklin, M., Gray, D., Tanzil, M., Guilford, F., Khasawneth, F.T., and Venketaraman, V. (2011). Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PloS One 6, e28378.Google Scholar

  • Hadzic, T., Li, L., Cheng, N., Walsh, S.A., Spitz, D.R., and Knudson, C.M. (2005). The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J. Immunol. 175, 7965–7972.Google Scholar

  • Hamuro, J., Murata, Y., and Suzuki, M. (1999). The triggering and healing of tumor stromal inflammatory reactions regulated by oxidative and reductive macrophages. Gann. Monograph Cancer Res. 48, 153–164.Google Scholar

  • Haque, M.A., Hawes, J.W., and Blum, J.S. (2001). Cysteinylation of MHC Class II ligands: peptide endocytosis and reduction within APC influences T cell recognition. J. Immunol. 166, 4543–4551.Google Scholar

  • Hassan, M.Q., Hadi, R.A., Al-Rawi, Z.S., Padron, V.A., and Stohs, S.J. (2001). The glutathione defense system in the pathogenesis of rheumatoid arthritis. J. Appl. Toxicol. 21, 69–73.Google Scholar

  • Hayes, J.D. and McLellan, L.I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31, 273–300.Google Scholar

  • Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C., and Ketheesan, N. (2015). Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 144, 171–185.Google Scholar

  • Hwang, E.S., Szabo, S.J., Schwartzberg, P.L., and Glimcher, L.H. (2005). T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433.Google Scholar

  • Incze, K., Farkas, J., Mihalyi, V., and Zukal, E. (1974). Antibacterial effect of cysteine-nitrosothiol and possible percursors thereof. Appl. Microbiol. 27, 202–205.Google Scholar

  • Jensen, P.E. (1995). Antigen unfolding and disulfide reduction in antigen presenting cells. Semin. Immunol. 7, 347–353.Google Scholar

  • Kaiko, G.E., Horvat, J.C., Beagley, K.W, and Hansbro, P.M. (2007). Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123, 326–338.Google Scholar

  • Kalebic, T., Kinter, A., Poli, G., Anderson, M.E., Meister, A., and Fauci A.S. (1991). Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetylcysteine. Proc. Natl. Acad. Sci. USA 88, 986–990.Google Scholar

  • Kamide, Y., Utsugi, M., Dobashi, K., Ono, A., Ishizuka, T., Hisada, T., Koga, Y., Uno, Y., Hamuro, J., and Mori, M. (2011). Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 66, 1183–1192.Google Scholar

  • Kato, T., Oikawa, S.T., Takahashi, K., Saito, K., Wang, L., Nishio, A., Hakamada-Taguchi, R., Kawanishi, S., and Kuribayashi, K. (2006). Endocrine disruptors that deplete glutathione levels in APC promote Th2 polarization in mice leading to the exacerbation of airway inflammation. Eur. J. Immunol. 36, 1199–1209.Google Scholar

  • Kato, C., Mikami, M., and Natsuno, T. (2008). Participation of glutathione in the elimination of Porphyromonas gingivalis in vivo. Oral. Microbiol. Immunol. 23, 441–448.Google Scholar

  • Khan, N., Alam, K., Mande, S.C., Valluri, V.L., Hasnain, S.E., and Mukhopadhyay, S. (2008). Mycobacterium tuberculosis heat shock protein 60 modulates immune response to PPD by manipulating the surface expression of TLR2 on macrophages. Cell. Microbiol. 10, 1711–1722.Google Scholar

  • Koike, Y., Hisada, T., Utsugi, M., Ishizuka, T., Shimizu, Y., Ono, A., Murata, Y., Hamuro, J., Mori, M., and Dobashi, K. (2007). Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice. Am. J. Respir. Cell. Mol. Biol. 37, 322–329.Google Scholar

  • Lagman, M., Ly, J., Saing, T., Kaur, S.M., Tudela, E.V., Morris, D., Chi, P.-T., Ochoa, C., Sathananthan, A., and Venketaraman, V. (2015). Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One 10, e0118436.Google Scholar

  • Linehan, E. and Fitzgerald, D.C. (2015). Ageing and the immune system: focus on macrophages. Eur. J. Microbiol. Immunol. 5, 14–24.Google Scholar

  • Lu, S.C. (2009). Regulation of glutathione synthesis. Mol. Asp. Med. 30, 42–59.Google Scholar

  • Lucas, S., Ghilardi, N., Li, J., and de Sauvage F.J. (2003). IL-27 regulates IL-12 responsiveness of naïve CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 100, 15047–15052.Google Scholar

  • Luckheeram, V.R., Zhou, R., Verma, A.D., and Bing, X. (2012). CD4+ T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135.Google Scholar

  • Lugo-Villarino, G., Maldonado-López, R., Possemato, R., Peñaranda, C., and Glimcher, L.H. (2003). T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc. Nat. Acad. Sci. USA 100, 7749–7754.Google Scholar

  • Lushchak, V.I. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 736837.Google Scholar

  • Ly, J., Lagman, M., Saing, T., Singh, M.K., Tudela, E.V., Morris, D., Anderson, J., Daliva, J., Ochoa, C., Patel, N., et al. (2015). Liposomal glutathione supplementation restores TH1 cytokine response to Mycobacterium tuberculosis infection in HIV-infected individuals. J. Interferon Cytokine Res. 35, 875–887.Google Scholar

  • Maher, P. (2005). The effects of stress and ageing on glutathione metabolism. Ageing Res. Rev. 4, 288–314.Google Scholar

  • Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686.Google Scholar

  • Martinez, F.O. and Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13.Google Scholar

  • Matthias, L.J., Yam, P.T., Jiang, X.M., Vandegraaff, N., Li, P., Poumbourios, P., Donoghue, N., and Hogg, P.J. (2002). Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat. Immunol. 3, 727–732.Google Scholar

  • Mori, I., Komatsu, T., Takeuchi, K., Nakakuki, K., Sudo, M., and Kimura, Y. (1995). In vivo induction of apoptosis by influenza virus. J. Gen. Virol. 76, 2869–2873.Google Scholar

  • Morris, D., Guerra, C., Donohue, C., Oh, H., Khurasany, M., and Venketaraman, V. (2012). Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin. Dev. Immunol. 2012, 734125.Google Scholar

  • Morris, D., Khurasany, M., Nguyen, T., Kim, J., Guilford, F., Mehta, R., Gray, D., Saviola, B., and Venketaraman, V. (2013a). Glutathione and infection. Biochim. Biophys. Acta 1830, 3329–3349.Google Scholar

  • Morris, D., Guerra, C., Khurasany, M., Guilford, F., Saviola, B., Huang, Y., and Venketaraman, V. (2013b). Glutathione supplementation improves macrophage functions in HIV. J. Interferon Cytokine Res. 33, 270–279.Google Scholar

  • Muraille, E., Oberdan, L., and Moser, M. (2014). Th1/Th2 paradigm extended: macrophage polarization as an appreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603.Google Scholar

  • Murata, Y., Amao, M., Yoneda, J., and Hamuro, J. (2002). Intracellular thiol redox status of macrophages directs the Th1 skewing in thioredoxin transgenic mice during aging. Mol. Immunol. 38, 747–757.Google Scholar

  • Murphy, K.M., Ouyang, W., Farrar, J.D., Yang, J., Ranganath, S., Asnagli, H., Afkarian, M., and Murphy, T.L. (2000). Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494.Google Scholar

  • Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy D.W., Goerdt, S., Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., et al. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20.Google Scholar

  • Nencioni, L., Iuvara, A., Aquilano, K., Ciriolo, M.R., Cozzolino, F., Rotilio, G., Garaci, E., and Palamara, A.T. (2003). Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2. FASEB J. 17, 758–760.Google Scholar

  • Nencioni, L., De Chiara, G., Sgarbanti, R., Amatore, D., Aquilano, K., Marcocci, M.E., Serafino, A., Torcia, M., Cozzolino, F., Ciriolo, M.R., et al. (2009). Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: impact on virally induced apoptosis and viral replication. J. Biol. Chem. 284, 16004–16015.Google Scholar

  • Oiry, J., Mialocq, P., Puy, J.Y., Fretier, P., Clayette, P., Dormont, D., and Imbach, J.L. (2001). NAC/MEA conjugate: a new potent antioxidant which increases the GSH level in various cell lines. Bioorg. Med. Chem. Lett. 11, 1189–1191.Google Scholar

  • Oiry, J., Mialocq, P., Puy, J.Y., Fretier, P., Dereuddre-Bosquet, N., Dormont, D., Imbach, J.L., and Clayette, P. (2004). Synthesis and biological evaluation in human monocyte-derived macrophages of N-(N-acetyl-l-cysteinyl)-Sacetylcysteamine analogues with potent antioxidant and anti-HIV activities. J. Med. Chem. 47, 1789–1795.Google Scholar

  • Palamara, A.T., Perno, C.F., Ciriolo, M.R., Dini, L., Balestra, E., D’Agostini, C., Di Francesco, P., Favalli, C., Rotilio, G., and Garaci, E. (1995). Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res. 27, 237–253.Google Scholar

  • Palamara, A.T., Brandi, G., Rossi, L., Millo, E., Benatti, U., Nencioni, L., Iuvara, A., Garaci, E., and Magnani, M. (2004). New synthetic glutathione derivatives with increased antiviral activities. Antivir. Chem. Chemother. 15, 83–91.Google Scholar

  • Perl, A., Gergely, P.Jr., Nagy, G., Koncz, A., and Banki, K. (2004). Mitochondrial hyperpolarization: a checkpoint of T cell life, death and autoimmunity. Trends Immunol. 25, 360–367.Google Scholar

  • Peterson, J.D., Herzenberg, L.A., Vasquez, K., and Waltenbaugh, C. (1998). Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc. Natl. Acad. Sci. USA 95, 3071–3076.Google Scholar

  • Podinovskaia, M., Lee, W., Caldwell, S., and Russell, D.G. (2013). Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell. Microbiol. 15, 843–859.Google Scholar

  • Ponnappan, S. and Ponnappan, U. (2011). Ageing and immune function: molecular mechanisms to interventions. Antioxid. Redox. Signal. 14, 1551–1585.Google Scholar

  • Ray, P.D., Huang, B.-W., and Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990.Google Scholar

  • Rizzoli, V., Schiappelli, P., Moretto, C., and Galzigna, L. (1995). S-acetyl and S-phenylacethyl-glutathione in rat brain tissue. Eur. J. Lab. Med. 3, 11–13.Google Scholar

  • Rushworth, G.F. and Megson, I.L. (2014). Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 41, 150–159.Google Scholar

  • Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Zvulun, E. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760.Google Scholar

  • Sgarbanti, R., Nencioni, L., Amatore, D., Coluccio, P., Fraternale, A., Sale, P., Mammola, C.L., Carpino, G., Gaudio, E., Magnani, M., et al. (2011). Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid. Redox Signal. 15, 593–606.Google Scholar

  • Short, S., Merkel, B.J., Caffrey, R., and McCoy, K.L. (1996). Defective antigen processing correlates with a low level of intracellular glutathione. Eur. J. Immunol. 26, 3015–3020.Google Scholar

  • Sido, B., Hack, V., Hochlehnert, A., Lipps, H., Herfarth, C., and Droge, W. (1998). Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 42, 485–492.Google Scholar

  • Spallholz, J.E. (1987). Glutathione: is it an evolutionary vestige of the penicillins? Med. Hypotheses 23, 253–257.Google Scholar

  • Staal, F.J. (1998). Glutathione and HIV infection: reduced reduced, or increased oxidized? Eur. J. Clin. Invest. 28, 194–196.Google Scholar

  • Staal, F.J., Roederer, M., Herzenberg, L.A., and Herzenberg, L.A. (1990). Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87, 9943–9947.Google Scholar

  • Tan, K.S., Lee, K.O., Low, K.C., Gamage, A.M., Liu, Y., Tan, G.Y., Koh, H.Q., Alonso, S., and Gan, Y.H. (2012). Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. J. Clin. Invest. 122, 2289–2300.Google Scholar

  • Thierfelder, W.E., Van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., et al. (1996). Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174.Google Scholar

  • Tiwari, G., Tiwari, R., Sriwastawa, S., Bhati, L., Pandey, S., Pandey, P., and Bannerjee, S.K. (2012). Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2, 2–11.Google Scholar

  • Trinchieri, G., Pflanz, S., and Kastelein, R.A. (2003). The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644.Google Scholar

  • Utsugi, M., Dobashi, K., Ishizuka, T., Endou, K., Hamuro, J., Murata, Y., Nakazawa, T., and Mori, M. (2003). c-Jun N-Termianl kinase negatively regulates lipopolysaccharide-induced IL-12 production in human macrophages: role of mitogen-activated protein kinase in glutathione redox regulation of IL-12 production. J. Immunol. 171, 628–635.Google Scholar

  • Venketaraman, V., Dayaram, Y.K., Talaue, M.T., and Connell, N.D. (2005). Glutathione and nitrosoglutathione in macrophage defense against Mycobacterium tuberculosis. Infect. Immun. 73, 1886–1889.Google Scholar

  • Venketaraman, V., Millman, A., Salman, M., Swaminathan, S., Goetz, M., Lardizabal, A., Hom, D., and Connell, N.D. (2008). Glutathione levels and immune responses in tuberculosis patients. Microb. Pathog. 44, 255–261.Google Scholar

  • Vogel, J.U., Cinatl, J., Dauletbaev, N., Buxbaum, S., Treusch, G., Cinatl, J.Jr., Gerein, V., and Doerr, H.W. (2005). Effects of S-acetylglutathione in cell and animal model of herpes simplex virus type 1 infection. Med. Microbiol. Immunol. 194, 55–59.Google Scholar

  • Vyas, J.M., Van der Veen A.G., and Ploegh, H.L. (2008). The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 8, 607–618.Google Scholar

  • Walsh, A.C., Michaud, S.G., Malossi, J.A., and Lawrence, D.A. (1995). Glutathione depletion in human T lymphocytes: analysis of activation-associated gene expression and the stress response. Toxicol. Appl. Pharmacol. 133, 249–261.Google Scholar

  • Watson, W.H., Chen, Y., and Jones, D.P. (2003). Redox state of glutathione and thioredoxin in differentiation and apoptosis. BioFactors 17, 307–314.Google Scholar

  • Weiskopf, D., Schwanninger, A., Weinberger, B., Almanzar, G., Parson, W., Buus, S., Lindner, H., and Grubeck-Loebenstein, B. (2010). Oxidative stress can alter the antigenicity of immunodominant peptides. J. Leuk. Biol. 87, 165–172.Google Scholar

  • Zargari, M., Allameh, A., Sanati, M.H., Tiraihi, T., Lavasani, S., and Emadyan, O. (2007). Relationship between the clinical scoring and demyelination in central nervous system with total antioxidant capacity of plasma during experimental autoimmune encephalomyelitis development in mice. Neurosci. Lett. 412, 24–28.Google Scholar

  • Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L., and Paul, W.E. (2006). GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16, 3–10.Google Scholar

About the article

Received: 2016-05-06

Accepted: 2016-08-03

Published Online: 2016-08-11

Published in Print: 2017-02-01

Citation Information: Biological Chemistry, Volume 398, Issue 2, Pages 261–275, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0202.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sylwia Wrotek, Justyna Sobocińska, Henryk M. Kozłowski, Małgorzata Pawlikowska, Tomasz Jędrzejewski, and Artur Dzialuk
International Journal of Molecular Sciences, 2020, Volume 21, Number 4, Page 1393
H. R. Griffiths, Matthew C.O. Rooney, and Yvonne Perrie
Antioxidants & Redox Signaling, 2020
Guojie Huang, Yaqi Lin, Linxiu Zhang, Zhihong Yan, Yudong Wang, and Yi Liu
Scientific Reports, 2019, Volume 9, Number 1
Francesca Bartoccini, Michele Mari, Michele Retini, Alessandra Fraternale, and Giovanni Piersanti
Organic Process Research & Development, 2019
Xiao and Meierhofer
International Journal of Molecular Sciences, 2019, Volume 20, Number 15, Page 3672
Rita Crinelli, Carolina Zara, Michaël Smietana, Michele Retini, Mauro Magnani, and Alessandra Fraternale
Nutrients, 2019, Volume 11, Number 6, Page 1291
Donatella Amatore, Ignacio Celestino, Serena Brundu, Luca Galluzzi, Paolo Coluccio, Paola Checconi, Mauro Magnani, Anna Teresa Palamara, Alessandra Fraternale, and Lucia Nencioni
FASEB BioAdvances, 2019, Volume 1, Number 5, Page 296
Ignacio Celestino, Paola Checconi, Donatella Amatore, Marta De Angelis, Paolo Coluccio, Rosanna Dattilo, Danilo Alunni Fegatelli, Ann Maria Clemente, Paola Matarrese, Maria Gabriella Torcia, Romina Mancinelli, Caterina Loredana Mammola, Enrico Garaci, Anna Rita Vestri, Walter Malorni, Anna Teresa Palamara, and Lucia Nencioni
Frontiers in Immunology, 2018, Volume 9
Anusha Angajala, Sangbin Lim, Joshua B. Phillips, Jin-Hwan Kim, Clayton Yates, Zongbing You, and Ming Tan
Frontiers in Immunology, 2018, Volume 9
Miroslav Pohanka, Pavla Martinkova, Martin Brtnicky, and Jindrich Kynicky
Toxicology Mechanisms and Methods, 2017, Volume 27, Number 6, Page 408

Comments (0)

Please log in or register to comment.
Log in