Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 398, Issue 2

Issues

The novel class of seven transmembrane segment inverted repeat carriers

Yung-Ning Chang
  • Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eric R. Geertsma
  • Corresponding author
  • Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-19 | DOI: https://doi.org/10.1515/hsz-2016-0254

Abstract

Solute carriers from the SLC4, SLC23, and SLC26 families are involved in pH regulation, vitamin C transport and ion homeostasis. While these families do not share any obvious sequence relationship, they are united by their unique and novel architecture. Each member of this structural class is organized into two structurally related halves of seven transmembrane segments each. These halves span the membrane with opposite orientations and form an intricately intertwined structure of two inverted repeats. This review highlights the general design principles of this fold and reveals the diversity between the different families. We discuss their domain architecture, structural framework and transport mode and detail an initial transport mechanism for this fold inferred from the recently solved structures of different members.

Keywords: anion exchanger; inverted repeat; nucleobase ascorbate transporter; nucleobase cation symporter-2; solute carrier family; sulfate permease

References

  • Alguel, Y., Amillis, S., Leung, J., Lambrinidis, G., Capaldi, S., Scull, N.J., Craven, G., Iwata, S., Armstrong, A., Mikros, E., et al. (2016). Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat. Commun. 7, 11336.Google Scholar

  • Alper, S.L. and Sharma, A.K. (2013). The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 34, 494–515.Google Scholar

  • Arakawa, T., Kobayashi-Yurugi, T., Alguel, Y., Iwanari, H., Hatae, H., Iwata, M., Abe, Y., Hino, T., Ikeda-Suno, C., Kuma, H., et al. (2015). Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350, 680–684.Google Scholar

  • Babu, M., Greenblatt, J.F., Emili, A., Strynadka, N.C., Reithmeier, R.A., and Moraes, T.F. (2010). Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure 18, 1450–1462.Google Scholar

  • Brahm, J. and Wieth, J.O. (1977). Separative pathways for urea and water, and for chloride in chicken erythrocytes. J. Physiol. 266, 727–749.Google Scholar

  • Bürzle, M., Suzuki, Y., Ackermann, D., Miyazaki, H., Maeda, N., Clemencon, B., Burrier, R., and Hediger, M.A. (2013). The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med 34, 436–454.Google Scholar

  • Casey, J.R. and Reithmeier, R.A. (1991). Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J. Biol. Chem. 266, 15726–15737.Google Scholar

  • Chan, R.H., Lewis, J.W., and Bogomolni, R.A. (2013). Photocycle of the LOV-STAS protein from the pathogen Listeria monocytogenes. Photochem. Photobiol. 89, 361–369.Google Scholar

  • Chernova, M.N., Jiang, L., Shmukler, B.E., Schweinfest, C.W., Blanco, P., Freedman, S.D., Stewart, A.K., and Alper, S.L. (2003). Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J. Physiol. 549, 3–19.Google Scholar

  • Coincon, M., Uzdavinys, P., Nji, E., Dotson, D.L., Winkelmann, I., Abdul-Hussein, S., Cameron, A.D., Beckstein, O., and Drew, D. (2016). Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23, 248–255.Google Scholar

  • Compton, E.L., Karinou, E., Naismith, J.H., Gabel, F., and Javelle, A. (2011). Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J. Biol. Chem. 286, 27058–27067.Google Scholar

  • Compton, E.L., Page, K., Findlay, H.E., Haertlein, M., Moulin, M., Zachariae, U., Norman, D.G., Gabel, F., and Javelle, A. (2014). Conserved structure and domain organization among bacterial Slc26 transporters. Biochem. J. 463, 297–307.Google Scholar

  • Crisman, T.J., Qu, S., Kanner, B.I., and Forrest, L.R. (2009). Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc. Natl. Acad. Sci. USA 106, 20752–20757.Google Scholar

  • Dahl, N.K., Jiang, L., Chernova, M.N., Stuart-Tilley, A.K., Shmukler, B.E., and Alper, S.L. (2003). Deficient HCO3 transport in an AE1 mutant with normal Cl transport can be rescued by carbonic anhydrase II presented on an adjacent AE1 protomer. J. Biol. Chem. 278, 44949–44958.Google Scholar

  • Dallos, P. and Fakler, B. (2002). Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3, 104–111.Google Scholar

  • Detro-Dassen, S., Schanzler, M., Lauks, H., Martin, I., zu Berstenhorst, S.M., Nothmann, D., Torres-Salazar, D., Hidalgo, P., Schmalzing, G., and Fahlke, C. (2008). Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J. Biol. Chem. 283, 4177–4188.Google Scholar

  • Drew, D. and Boudker, O. (2016). Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572.Google Scholar

  • Espiritu, D.J., Bernardo, A.A., and Arruda, J.A. (2006). Role of NH2 and COOH termini in targeting, stability, and activity of sodium bicarbonate cotransporter 1. Am. J. Physiol. Renal Physiol. 291, F588–596.Google Scholar

  • Forrest, L.R. (2015). Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337.Google Scholar

  • Forrest, L.R., Zhang, Y.W., Jacobs, M.T., Gesmonde, J., Xie, L., Honig, B.H., and Rudnick, G. (2008). Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad Sci. USA 105, 10338–10343.Google Scholar

  • Geertsma, E.R., Chang, Y.N., Shaik, F.R., Neldner, Y., Pardon, E., Steyaert, J., and Dutzler, R. (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat. Struct. Mol. Biol. 22, 803–808.Google Scholar

  • Gournas, C., Papageorgiou, I., and Diallinas, G. (2008). The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol. Biosyst. 4, 404–416.Google Scholar

  • Grinstein, S., Ship, S., and Rothstein, A. (1978). Anion transport in relation to proteolytic dissection of band 3 protein. Biochim. Biophys Acta 507, 294–304.Google Scholar

  • Hallworth, R., Stark, K., Zholudeva, L., Currall, B.B., and Nichols, M.G. (2013). The conserved tetrameric subunit stoichiometry of Slc26 proteins. Microsc. Microanal. 19, 799–807.Google Scholar

  • Hediger, M.A., Romero, M.F., Peng, J.B., Rolfs, A., Takanaga, H., and Bruford, E.A. (2004). The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins: Introduction. Pflüger’s Arch. 447, 465–468.Google Scholar

  • Heneghan, J.F., Akhavein, A., Salas, M.J., Shmukler, B.E., Karniski, L.P., Vandorpe, D.H., and Alper, S.L. (2010). Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am. J. Physiol. Cell Physiol. 298, C1363–1375.Google Scholar

  • Jennings, M.L. and Anderson, M.P. (1987). Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J. Biol. Chem. 262, 1691–1697.Google Scholar

  • Jennings, M.L. and Smith, J.S. (1992). Anion-proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J. Biol. Chem. 267, 13964–13971.Google Scholar

  • Ko, S.B., Zeng, W., Dorwart, M.R., Luo, X., Kim, K.H., Millen, L., Goto, H., Naruse, S., Soyombo, A., Thomas, P.J., et al. (2004). Gating of CFTR by the STAS domain of SLC26 transporters. Nat. Cell Biol. 6, 343–350.Google Scholar

  • Kosti, V., Papageorgiou, I., and Diallinas, G. (2010). Dynamic elements at both cytoplasmically and extracellularly facing sides of the UapA transporter selectively control the accessibility of substrates to their translocation pathway. J. Mol. Biol. 397, 1132–1143.Google Scholar

  • Lee, C., Kang, H.J., von Ballmoos, C., Newstead, S., Uzdavinys, P., Dotson, D.L., Iwata, S., Beckstein, O., Cameron, A.D., and Drew, D. (2013). A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577.Google Scholar

  • Lindenthal, S. and Schubert, D. (1991). Monomeric erythrocyte band 3 protein transports anions. Proc. Natl. Acad. Sci. USA 88, 6540–6544.Google Scholar

  • Lolli, G., Pasqualetto, E., Costanzi, E., Bonetto, G., and Battistutta, R. (2016). The STAS domain of mammalian SLC26A5 prestin harbours an anion-binding site. Biochem. J. 473, 365–370.Google Scholar

  • Low, P.S. (1986). Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim. Biophys. Acta 864, 145–167.Google Scholar

  • Lu, F., Li, S., Jiang, Y., Jiang, J., Fan, H., Lu, G., Deng, D., Dang, S., Zhang, X., Wang, J., et al. (2011). Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246.Google Scholar

  • Mancusso, R., Gregorio, G.G., Liu, Q., and Wang, D.N. (2012). Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622–626.Google Scholar

  • Martzoukou, O., Karachaliou, M., Yalelis, V., Leung, J., Byrne, B., Amillis, S., and Diallinas, G. (2015). Oligomerization of the UapA purine transporter is critical for ER-exit, plasma membrane localization and turnover. J. Mol. Biol. 427, 2679–2696.Google Scholar

  • Masuda, S., Murakami, K.S., Wang, S., Anders Olson, C., Donigian, J., Leon, F., Darst, S.A., and Campbell, E.A. (2004). Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J. Mol. Biol. 340, 941–956.Google Scholar

  • Matsuyama, H., Kawano, Y., and Hamasaki, N. (1986). Involvement of a histidine residue in inorganic phosphate and phosphoenolpyruvate transport across the human erythrocyte membrane. J. Biochem. 99, 495–501.Google Scholar

  • McAlear, S.D., Liu, X., Williams, J.B., McNicholas-Bevensee, C.M., and Bevensee, M.O. (2006). Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: functional comparison and roles of the amino and carboxy termini. J. Gen. Physiol. 127, 639–658.Google Scholar

  • Mio, K., Kubo, Y., Ogura, T., Yamamoto, T., Arisaka, F., and Sato, C. (2008). The motor protein prestin is a bullet-shaped molecule with inner cavities. J. Biol. Chem. 283, 1137–1145.Google Scholar

  • Mulligan, C., Fenollar-Ferrer, C., Fitzgerald, G.A., Vergara-Jaque, A., Kaufmann, D., Li, Y., Forrest, L.R., and Mindell, J.A. (2016). The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat. Struct. Mol. Biol. 23, 256–263.Google Scholar

  • Ohana, E., Yang, D., Shcheynikov, N., and Muallem, S. (2009). Diverse transport modes by the solute carrier 26 family of anion transporters. J. Physiol. 587, 2179–2185.Google Scholar

  • Oliver, D., He, D.Z., Klocker, N., Ludwig, J., Schulte, U., Waldegger, S., Ruppersberg, J.P., Dallos, P., and Fakler, B. (2001). Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292, 2340–2343.Google Scholar

  • Papageorgiou, I., Gournas, C., Vlanti, A., Amillis, S., Pantazopoulou, A., and Diallinas, G. (2008). Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. J. Mol. Biol. 382, 1121–1135.Google Scholar

  • Parker, M.D. and Boron, W.F. (2013). The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol. Rev. 93, 803–959.Google Scholar

  • Pasqualetto, E., Aiello, R., Gesiot, L., Bonetto, G., Bellanda, M., and Battistutta, R. (2010). Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J. Mol. Biol. 400, 448–462.Google Scholar

  • Passow, H. (1986). Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Pharmacol. 103, 61–203.Google Scholar

  • Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M., and Tucker, L. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad Sci. USA 101, 18228–18233.Google Scholar

  • Reithmeier, R.A. (1979). Fragmentation of the band 3 polypeptide from human erythrocyte membranes. Size and detergent binding of the membrane-associated domain. J. Biol. Chem. 254, 3054–3060.Google Scholar

  • Reithmeier, R.A., Casey, J.R., Kalli, A.C., Sansom, M.S., Alguel, Y., and Iwata, S. (2016). Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim. Biophys. Acta 1858, 1507–1532.Google Scholar

  • Ressl, S., Terwisscha van Scheltinga, A.C., Vonrhein, C., Ott, V., and Ziegler, C. (2009). Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52.Google Scholar

  • Reyes, N., Ginter, C., and Boudker, O. (2009). Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885.Google Scholar

  • Romero, M.F., Chen, A.P., Parker, M.D., and Boron, W.F. (2013). The SLC4 family of bicarbonate HCO3 transporters. Mol. Aspects Med. 34, 159–182.Google Scholar

  • Rouached, H., Berthomieu, P., El Kassis, E., Cathala, N., Catherinot, V., Labesse, G., Davidian, J.C., and Fourcroy, P. (2005). Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J. Biol. Chem. 280, 15976–15983.Google Scholar

  • Saier, M.H., Jr. (2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354–411.Google Scholar

  • Schlessinger, A., Matsson, P., Shima, J.E., Pieper, U., Yee, S.W., Kelly, L., Apeltsin, L., Stroud, R.M., Ferrin, T.E., Giacomini, K.M., et al. (2010). Comparison of human solute carriers. Protein Sci. 19, 412–428.Google Scholar

  • Sharma, A.K., Rigby, A.C., and Alper, S.L. (2011a). STAS domain structure and function. Cell Physiol. Biochem. 28, 407–422.Google Scholar

  • Sharma, A.K., Ye, L., Baer, C.E., Shanmugasundaram, K., Alber, T., Alper, S.L., and Rigby, A.C. (2011b). Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J. Biol. Chem. 286, 8534–8544.Google Scholar

  • Shibagaki, N. and Grossman, A.R. (2004). Probing the function of STAS domains of the Arabidopsis sulfate transporters. J. Biol. Chem. 279, 30791–30799.Google Scholar

  • Shibagaki, N. and Grossman, A.R. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J. Biol. Chem. 281, 22964–22973.Google Scholar

  • Shnitsar, V., Li, J., Li, X., Calmettes, C., Basu, A., Casey, J.R., Moraes, T.F., and Reithmeier, R.A. (2013). A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J. Biol. Chem. 288, 33848–33860.Google Scholar

  • Srinivasan, L., Baars, T.L., Fendler, K., and Michel, H. (2016). Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems. Biochim. Biophys. Acta 1858, 698–705.Google Scholar

  • Takazaki, S., Abe, Y., Kang, D., Li, C., Jin, X., Ueda, T., and Hamasaki, N. (2006). The functional role of arginine 901 at the C-terminus of the human anion transporter band 3 protein. J. Biochem. 139, 903–912.Google Scholar

  • Thurtle-Schmidt, B.H. and Stroud, R.M. (2016). Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc. Natl. Acad Sci. USA 113, 10542–10546.Google Scholar

  • Van Dort, H.M., Moriyama, R., and Low, P.S. (1998). Effect of band 3 subunit equilibrium on the kinetics and affinity of ankyrin binding to erythrocyte membrane vesicles. J. Biol. Chem. 273, 14819–14826.Google Scholar

  • Vastermark, A. and Saier, M.H., Jr. (2014). Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins 82, 336–346.Google Scholar

  • Vergara-Jaque, A., Fenollar-Ferrer, C., Kaufmann, D., and Forrest, L.R. (2015). Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol. 6, 183.Google Scholar

  • Vlanti, A., Amillis, S., Koukaki, M., and Diallinas, G. (2006). A novel-type substrate-selectivity filter and ER-exit determinants in the UapA purine transporter. J. Mol. Biol. 357, 808–819.Google Scholar

  • Wang, D.N., Kuhlbrandt, W., Sarabia, V.E., and Reithmeier, R.A. (1993). Two-dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO J 12, 2233–2239.Google Scholar

  • Wang, X., Yang, S., Jia, S., and He, D.Z. (2010). Prestin forms oligomer with four mechanically independent subunits. Brain Res 1333, 28–35.Google Scholar

  • Wohlert, D., Grotzinger, M.J., Kuhlbrandt, W., and Yildiz, O. (2015). Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer. eLife 4, e09375.Google Scholar

  • Zhang, D., Kiyatkin, A., Bolin, J.T., and Low, P.S. (2000). Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96, 2925–2933.Google Scholar

  • Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., and Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–155.Google Scholar

  • Zheng, J., Du, G.G., Anderson, C.T., Keller, J.P., Orem, A., Dallos, P., and Cheatham, M. (2006). Analysis of the oligomeric structure of the motor protein prestin. J. Biol. Chem. 281, 19916–19924.Google Scholar

About the article

Received: 2016-07-18

Accepted: 2016-11-16

Published Online: 2016-11-19

Published in Print: 2017-02-01


Citation Information: Biological Chemistry, Volume 398, Issue 2, Pages 165–174, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0254.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kevin W. Huynh, Jiansen Jiang, Natalia Abuladze, Kirill Tsirulnikov, Liyo Kao, Xuesi Shao, Debra Newman, Rustam Azimov, Alexander Pushkin, Z. Hong Zhou, and Ira Kurtz
Nature Communications, 2018, Volume 9, Number 1
[2]
Yazan M. Abbas, Ashley M. Toye, John L. Rubinstein, and Reinhart A.F. Reithmeier
Current Opinion in Hematology, 2018, Volume 25, Number 3, Page 163
[5]
Anargyros Doukas, Ekaterini Karena, Maria Botou, Konstantinos Papakostas, Amalia Papadaki, Olympia Tziouvara, Evaggelia Xingi, Stathis Frillingos, and Haralabia Boleti
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2019, Volume 1861, Number 9, Page 1546
[6]
Makoto F. Kuwabara, Koichiro Wasano, Satoe Takahashi, Justin Bodner, Tomotaka Komori, Sotaro Uemura, Jing Zheng, Tomohiro Shima, and Kazuaki Homma
Journal of Biological Chemistry, 2018, Volume 293, Number 26, Page 9970
[7]
Emel Ficici, José D. Faraldo-Gómez, Michael L. Jennings, and Lucy R. Forrest
The Journal of General Physiology, 2017, Page jgp.201711836

Comments (0)

Please log in or register to comment.
Log in