Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 8, 2016

Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis

  • Tamara Hoffmann and Erhard Bremer EMAIL logo
From the journal Biological Chemistry

Abstract

The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.

Acknowledgments

Financial support for our studies on the osmostress response systems of B. subtilis was provided over the years by the Deutsche Forschungsgemeinschaft (DFG), the LOEWE excellence program of the state of Hessen via the Center for Synthetic Microbiology (Synmicro; University of Marburg, Germany), the Bundesministerium für Bildung und Forschung (BMBF) through the consortium BaCell-SysMo2, and the Fonds der Chemischen Industry (FCI). As always, we greatly value the expert help of Vickie Koogle in the language editing of our manuscript. We profoundly thank our colleagues Lutz Schmitt and Sander Smits (University of Düsseldorf; Germany), Michael Hecker and Uwe Völker (University of Greifswald; Germany), and Jörg Stülke and Fabian Commichau (University of Göttingen; Germany) for inspiring and long-term collaborations on the ‘ins and outs’ of the systems-wide responses of B. subtilis to osmotic stress and the analysis of the transporters, which are at the core of it.

References

Akashi, H. and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99, 3695–3700.10.1073/pnas.062526999Search in Google Scholar PubMed PubMed Central

Alvarez, F.J., Orelle, C., Huang, Y., Bajaj, R., Everly, R.M., Klug, C.S., and Davidson, A.L. (2015). Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol. Microbiol. 98, 878–894.10.1111/mmi.13165Search in Google Scholar PubMed PubMed Central

Balaji, B., O’Connor, K., Lucas, J.R., Anderson, J.M., and Csonka, L.N. (2005). Timing of induction of osmotically controlled genes in Salmonella enterica serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl. Environ. Microbiol. 71, 8273–8283.10.1128/AEM.71.12.8273-8283.2005Search in Google Scholar PubMed PubMed Central

Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., Vallenet, D., Wang, T., Moszer, I., Medigue, C., et al. (2009). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155, 1758–1775.10.1099/mic.0.027839-0Search in Google Scholar PubMed PubMed Central

Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., et al. (2004). New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101, 6421–6426.10.1073/pnas.0308014101Search in Google Scholar PubMed PubMed Central

Bashir, A., Hoffmann, T., Kempf, B., Xie, X., Smits, S.H., and Bremer, E. (2014a). The plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis. Microbiology 160, 2283–2294.10.1099/mic.0.079665-0Search in Google Scholar PubMed

Bashir, A., Hoffmann, T., Smits, S.H., and Bremer, E. (2014b). Dimethlyglycine provides salt and temperature stress protection to Bacillus subtilis. Appl. Environ. Microbiol. 80, 2773–2785.10.1128/AEM.00078-14Search in Google Scholar PubMed PubMed Central

Bay, D.C. and Turner, R.J. (2012). Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J. Bacteriol. 194, 5941–5948.10.1128/JB.00666-12Search in Google Scholar PubMed PubMed Central

Belda, E., Sekowska, A., Le Fevre, F., Morgat, A., Mornico, D., Ouzounis, C., Vallenet, D., Medigue, C., and Danchin, A. (2013). An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159, 757–770.10.1099/mic.0.064691-0Search in Google Scholar PubMed

Belitsky, B.R. (2011). Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. J. Mol. Biol. 413, 321–336.10.1016/j.jmb.2011.08.003Search in Google Scholar PubMed PubMed Central

Belitsky, B.R. and Sonenshein, A.L. (2013). Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proc. Natl. Acad. Sci. USA 110, 7026–7031.10.1073/pnas.1300428110Search in Google Scholar PubMed PubMed Central

Berntsson, R.P., Smits, S.H., Schmitt, L., Slotboom, D.J., and Poolman, B. (2010). A structural classification of substrate-binding proteins. FEBS Lett. 584, 2606–2617.10.1016/j.febslet.2010.04.043Search in Google Scholar PubMed

Biemans-Oldehinkel, E., Mahmood, N.A., and Poolman, B. (2006). A sensor for intracellular ionic strength. Proc. Natl. Acad. Sci. USA 103, 10624–10629.10.1073/pnas.0603871103Search in Google Scholar PubMed PubMed Central

Block, K.F., Hammond, M.C., and Breaker, R.R. (2010). Evidence for widespread gene control function by the ydaO riboswitch candidate. J. Bacteriol. 192, 3983–3989.10.1128/JB.00450-10Search in Google Scholar PubMed PubMed Central

Boch, J., Kempf, B., and Bremer, E. (1994). Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol. 176, 5364–5371.10.1128/jb.176.17.5364-5371.1994Search in Google Scholar PubMed PubMed Central

Boch, J., Kempf, B., Schmid, R., and Bremer, E. (1996). Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J. Bacteriol. 178, 5121–5129.10.1128/jb.178.17.5121-5129.1996Search in Google Scholar PubMed PubMed Central

Bolen, D.W. and Baskakov, I.V. (2001). The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310, 955–963.10.1006/jmbi.2001.4819Search in Google Scholar PubMed

Booth, I.R. (2014). Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18, 16–22.10.1016/j.mib.2014.01.005Search in Google Scholar PubMed PubMed Central

Booth, I.R. and Blount, P. (2012). The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J. Bacteriol. 194, 4802–4809.10.1128/JB.00576-12Search in Google Scholar PubMed PubMed Central

Börngen, K., Battle, A.R., Möker, N., Morbach, S., Marin, K., Martinac, B., and Krämer, R. (2010). The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim. Biophys. Acta 1798, 2141–2149.10.1016/j.bbamem.2010.06.022Search in Google Scholar PubMed

Bourot, S., Sire, O., Trautwetter, A., Touze, T., Wu, L.F., Blanco, C., and Bernard, T. (2000). Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J. Biol. Chem. 275, 1050–1056.10.1074/jbc.275.2.1050Search in Google Scholar

Bouskill, N.J., Wood, T.E., Baran, R., Ye, Z., Bowen, B.P., Lim, H., Zhou, J., Nostrand, J.D., Nico, P., Northen, T.R., et al. (2016). Belowground response to drought in a tropical forest soil. I. changes in microbial functional potential and metabolism. Front. Microbiol. 7, 525.10.3389/fmicb.2016.00525Search in Google Scholar

Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98, 11621–11626.10.1073/pnas.191384198Search in Google Scholar

Bremer, E. (2002). Adaptation to changing osmolarity. In: Bacillus subtilis and its closes relatives: from genes to cells, A.L. Sonenshein, J.A. Hoch, and R. Losick, eds. (Washington, DC: ASM Press), pp. 385–391.Search in Google Scholar

Bremer, E. and Krämer, R. (2000). Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. In: Bacterial Stress Responses, G. Storz and R. Hengge-Aronis, eds. (Washington, DC, USA: ASM Press), pp. 79–97.10.1016/S1095-6433(00)80031-8Search in Google Scholar

Brill, J., Hoffmann, T., Bleisteiner, M., and Bremer, E. (2011). Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J. Bacteriol. 193, 5335–5346.10.1128/JB.05490-11Search in Google Scholar PubMed PubMed Central

Broy, S., Chen, C., Hoffmann, T., Brock, N.L., Nau-Wagner, G., Jebbar, M., Smits, S.H., Dickschat, J.S., and Bremer, E. (2015). Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Environ. Microbiol. 7, 2362–2378.10.1111/1462-2920.12698Search in Google Scholar PubMed

Calamita, G. (2000). The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37, 254–262.10.1046/j.1365-2958.2000.02016.xSearch in Google Scholar PubMed

Capp, M.W., Pegram, L.M., Saecker, R.M., Kratz, M., Riccardi, D., Wendorff, T., Cannon, J.G., and Record, M.T., Jr. (2009). Interactions of the osmolyte glycine betaine with molecular surfaces in water: thermodynamics, structural interpretation, and prediction of m-values. Biochemistry 48, 10372–10379.10.1021/bi901273rSearch in Google Scholar PubMed PubMed Central

Carey, J. (2016). Crucial role of belowground biodiversity. Proc. Natl. Acad. Sci. USA 113, 7682–7685.10.1073/pnas.1609238113Search in Google Scholar PubMed PubMed Central

Carlson, M.L., Bao, H., and Duong, F. (2016). Formation of a chloride-conducting state in the maltose ATP-binding cassette (ABC) transporter. J. Biol. Chem. 291, 12119–12125.10.1074/jbc.M115.711622Search in Google Scholar PubMed PubMed Central

Cayley, S., Lewis, B.A., and Record, M.T., Jr. (1992). Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 174, 1586–1595.10.1128/jb.174.5.1586-1595.1992Search in Google Scholar PubMed PubMed Central

Chattopadhyay, M.K., Kern, R., Mistou, M.Y., Dandekar, A.M., Uratsu, S.L., and Richarme, G. (2004). The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42 degrees C. J. Bacteriol. 186, 8149–8152.10.1128/JB.186.23.8149-8152.2004Search in Google Scholar PubMed PubMed Central

Chen, C. and Beattie, G.A. (2007). Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-β synthase domains are required for its osmoregulatory function. J. Bacteriol. 189, 6901–6912.10.1128/JB.00763-07Search in Google Scholar PubMed PubMed Central

Chen, Y., Cao, S., Chai, Y., Clardy, J., Kolter, R., Guo, J.H., and Losick, R. (2012). A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol. Microbiol. 85, 418–430.10.1111/j.1365-2958.2012.08109.xSearch in Google Scholar PubMed PubMed Central

Cheng, J., Guffanti, A.A., and Krulwich, T.A. (1997). A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore. Mol. Microbiol. 23, 1107–1120.10.1046/j.1365-2958.1997.2951656.xSearch in Google Scholar PubMed

Commichau, F.M., Dickmanns, A., Gundlach, J., Ficner, R., and Stulke, J. (2015). A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol. Microbiol. 97, 189–204.10.1111/mmi.13026Search in Google Scholar PubMed

Corrigan, R.M. and Grundling, A. (2013). Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11, 513–524.10.1038/nrmicro3069Search in Google Scholar PubMed

Corrigan, R.M., Campeotto, I., Jeganathan, T., Roelofs, K.G., Lee, V.T., and Gründling, A. (2013). Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc. Natl. Acad. Sci. USA 110, 9084–9089.10.1073/pnas.1300595110Search in Google Scholar PubMed PubMed Central

Cosquer, A., Ficamos, M., Jebbar, M., Corbel, J.C., Choquet, G., Fontenelle, C., Uriac, P., and Bernard, T. (2004). Antibacterial activity of glycine betaine analogues: involvement of osmoporters. Bioorg. Med. Chem. Lett 14, 2061–2065.10.1016/j.bmcl.2004.02.045Search in Google Scholar PubMed

Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121–147.10.1128/mr.53.1.121-147.1989Search in Google Scholar PubMed PubMed Central

Czech, L., Stöveken, N., and Bremer, E. (2016). EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb. Cell Fact. 15, 126.10.1186/s12934-016-0525-4Search in Google Scholar

Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364.10.1128/MMBR.00031-07Search in Google Scholar

Delamarche, C., Thomas, D., Rolland, J.P., Froger, A., Gouranton, J., Svelto, M., Agre, P., and Calamita, G. (1999). Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181, 4193–4197.10.1128/JB.181.14.4193-4197.1999Search in Google Scholar

Deng, Y., Sun, M., and Shaevitz, J.W. (2011). Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158–101.10.1103/PhysRevLett.107.158101Search in Google Scholar

Diamant, S., Eliahu, N., Rosenthal, D., and Goloubinoff, P. (2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591.10.1074/jbc.M103081200Search in Google Scholar

Diskowski, M., Mikusevic, V., Stock, C., and Hänelt, I. (2015). Functional diversity of the superfamily of K(+) transporters to meet various requirements. Biol. Chem. 396, 1003–1014.10.1515/hsz-2015-0123Search in Google Scholar

Du, Y., Shi, W.W., He, Y.X., Yang, Y.H., Zhou, C.Z., and Chen, Y. (2011). Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem. J. 436, 283–289.10.1042/BJ20102097Search in Google Scholar

Durell, S.R. and Guy, H.R. (1999). Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys. J. 77, 789–807.10.1016/S0006-3495(99)76932-8Search in Google Scholar

Earl, A.M., Losick, R., and Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275.10.1016/j.tim.2008.03.004Search in Google Scholar PubMed PubMed Central

Edwards, M.D., Black, S., Rasmussen, T., Rasmussen, A., Stokes, N.R., Stephen, T.L., Miller, S., and Booth, I.R. (2012). Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels (Austin) 6, 272–281.10.4161/chan.20998Search in Google Scholar PubMed PubMed Central

Eggeling, L. and Sahm, H. (2003). New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch. Microbiol. 180, 155–160.10.1007/s00203-003-0581-0Search in Google Scholar PubMed

Eitinger, T., Rodionov, D.A., Grote, M., and Schneider, E. (2011). Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS. Microbiol. Rev. 35, 3–67.10.1111/j.1574-6976.2010.00230.xSearch in Google Scholar PubMed

Fichman, Y., Gerdes, S.Y., Kovacs, H., Szabados, L., Zilberstein, A., and Csonka, L.N. (2014). Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol. Rev. Camb. Philos. Soc. 90, 1065–1099.10.1111/brv.12146Search in Google Scholar PubMed

Fujisawa, M., Kusumoto, A., Wada, Y., Tsuchiya, T., and Ito, M. (2005). NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis. Arch. Microbiol. 183, 411–420.10.1007/s00203-005-0011-6Search in Google Scholar PubMed

Fujisawa, M., Ito, M., and Krulwich, T.A. (2007). Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. Proc. Natl. Acad. Sci. USA 104, 13289–13294.10.1073/pnas.0703709104Search in Google Scholar PubMed PubMed Central

Galinski, E.A., and Trüper, H.G. (1994). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 15, 95–108.10.1111/j.1574-6976.1994.tb00128.xSearch in Google Scholar

Gao, A. and Serganov, A. (2014). Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat. Chem. Biol. 10, 787–792.10.1038/nchembio.1607Search in Google Scholar PubMed PubMed Central

Gorecki, K., Hagerhall, C., and Drakenberg, T. (2014). The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance. Anal. Biochem. 445, 80–86.10.1016/j.ab.2013.10.003Search in Google Scholar PubMed

Gouridis, G., Schuurman-Wolters, G.K., Ploetz, E., Husada, F., Vietrov, R., de Boer, M., Cordes, T., and Poolman, B. (2015). Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat. Struct. Mol. Biol. 22, 57–64.10.1038/nsmb.2929Search in Google Scholar PubMed

Grammann, K., Volke, A., and Kunte, H.J. (2002). New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J. Bacteriol. 184, 3078–3085.10.1128/JB.184.11.3078-3085.2002Search in Google Scholar PubMed PubMed Central

Graumann, P.L. and Marahiel, M.A. (1999). Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol 1, 203–209.Search in Google Scholar

Gundlach, J., Mehne, F.M., Herzberg, C., Kampf, J., Valerius, O., Kaever, V. and Stülke, J. (2015). An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J. Bacteriol. 197, 3265–3274.10.1128/JB.00564-15Search in Google Scholar PubMed PubMed Central

Gundlach, J., Rath, H., Herzberg, C., Mäder, U., and Stülke, J. (2016). Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm bormation. Front. Microbiol. 7, 804.10.3389/fmicb.2016.00804Search in Google Scholar PubMed PubMed Central

Hahne, H., Mäder, U., Otto, A., Bonn, F., Steil, L., Bremer, E., Hecker, M., and Becher, D. (2010). A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J. Bacteriol. 192, 870–882.10.1128/JB.01106-09Search in Google Scholar PubMed PubMed Central

Hänelt, I., Tholema, N., Kröning, N., Vor der Brüggen, M., Wunnicke, D., and Bakker, E.P. (2011). KtrB, a member of the superfamily of K+ transporters. Eur. J. Cell Biol. 90, 696–704.10.1016/j.ejcb.2011.04.010Search in Google Scholar PubMed

Haswell, E.S., Phillips, R., and Rees, D.C. (2011). Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369.10.1016/j.str.2011.09.005Search in Google Scholar PubMed PubMed Central

Hecker, M., Pane-Farre, J., and Völker, U. (2007). SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu. Rev. Microbiol. 61, 215–236.10.1146/annurev.micro.61.080706.093445Search in Google Scholar PubMed

Hengge, R., Gründling, A., Jenal, U., Ryan, R., and Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. J. Bacteriol. 198, 15–26.10.1128/JB.00331-15Search in Google Scholar PubMed PubMed Central

Higgins, D. and Dworkin, J. (2012). Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36, 131–148.10.1111/j.1574-6976.2011.00310.xSearch in Google Scholar PubMed PubMed Central

Hoffmann, T. and Bremer, E. (2011). Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J. Bacteriol. 193, 1552–1562.10.1128/JB.01319-10Search in Google Scholar PubMed PubMed Central

Hoffmann, T. and Bremer, E. (2016). Management of osmotic stress by Bacillus subtilis: genetics and physiology. In: Stress and environmental regulation of gene expression and adaptation in bacteria. F.J. de Bruijn, ed. (Hoboken, NJ, USA: John Wiley & Sons, Inc.), pp. 657–676.10.1002/9781119004813.ch63Search in Google Scholar

Hoffmann, T., Boiangiu, C., Moses, S., and Bremer, E. (2008). Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl. Environ. Microbiol. 74, 2454–2460.10.1128/AEM.01573-07Search in Google Scholar PubMed PubMed Central

Hoffmann, T., von Blohn, C., Stanek, A., Moses, S., Barzantny, S., and Bremer, E. (2012). Synthesis, release, and recapture of the compatible solute proline by osmotically stressed Bacillus subtilis cells. Appl. Environ. Microbiol. 78, 5753–5762.10.1128/AEM.01040-12Search in Google Scholar PubMed PubMed Central

Hoffmann, T., Wensing, A., Brosius, M., Steil, L., Volker, U., and Bremer, E. (2013). Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J. Bacteriol. 195, 510–522.10.1128/JB.01505-12Search in Google Scholar PubMed PubMed Central

Holtmann, G. and Bremer, E. (2004). Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J. Bacteriol. 186, 1683–1693.10.1128/JB.186.6.1683-1693.2004Search in Google Scholar PubMed PubMed Central

Holtmann, G., Bakker, E.P., Uozumi, N., and Bremer, E. (2003). KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J. Bacteriol. 185, 1289–1298.10.1128/JB.185.4.1289-1298.2003Search in Google Scholar PubMed PubMed Central

Höper, D., Völker, U., and Hecker, M. (2005). Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J. Bacteriol. 187, 2810–2826.10.1128/JB.187.8.2810-2826.2005Search in Google Scholar PubMed PubMed Central

Horn, C., Sohn-Bösser, L., Breed, J., Welte, W., Schmitt, L., and Bremer, E. (2006). Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 357, 592–606.10.1016/j.jmb.2005.12.085Search in Google Scholar PubMed

Huynh, T.N., Choi, P.H., Sureka, K., Ledvina, H.E., Campillo, J., Tong, L., and Woodward, J.J. (2016). Cyclic di-AMP targets the cystathionine β-synthase domain of the osmolyte transporter OpuC. Mol. Microbiol. 102, 233–243.10.1111/mmi.13456Search in Google Scholar PubMed PubMed Central

Ignatova, Z. and Gierasch, L.M. (2006). Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA 103, 13357–13361.10.1073/pnas.0603772103Search in Google Scholar PubMed PubMed Central

Jacso, T., Schneider, E., Rupp, B., and Reif, B. (2012). Substrate transport activation is mediated through second periplasmic loop of transmembrane protein MalF in maltose transport complex of Escherichia coli. J. Biol. Chem. 287, 17040–17049.10.1074/jbc.M112.340679Search in Google Scholar PubMed PubMed Central

Jebbar, M., von Blohn, C., and Bremer, E. (1997). Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol. Lett. 154, 325–330.10.1111/j.1574-6968.1997.tb12663.xSearch in Google Scholar

Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., and MacKinnon, R. (2002). The open pore conformation of potassium channels. Nature 417, 523–526.10.1038/417523aSearch in Google Scholar PubMed

Jung, H., Hilger, D., and Raba, M. (2012). The Na+/L-proline transporter PutP. Front. Biosci. 17, 745–759.10.2741/3955Search in Google Scholar PubMed

Kapfhammer, D., Karatan, E., Pflughoeft, K.J., and Watnick, P.I. (2005). Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 71, 3840–3847.10.1128/AEM.71.7.3840-3847.2005Search in Google Scholar PubMed PubMed Central

Kappes, R.M., Kempf, B., and Bremer, E. (1996). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178, 5071–5079.10.1128/jb.178.17.5071-5079.1996Search in Google Scholar PubMed PubMed Central

Kappes, R.M., Kempf, B., Kneip, S., Boch, J., Gade, J., Meier-Wagner, J., and Bremer, E. (1999). Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol. Microbiol. 32, 203–216.10.1046/j.1365-2958.1999.01354.xSearch in Google Scholar PubMed

Karasawa, A., Erkens, G.B., Berntsson, R.P., Otten, R., Schuurman-Wolters, G.K., Mulder, F.A., and Poolman, B. (2011). Cystathionine beta-synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 286, 37280–37291.10.1074/jbc.M111.284059Search in Google Scholar PubMed PubMed Central

Karasawa, A., Swier, L.J., Stuart, M.C., Brouwers, J., Helms, B., and Poolman, B. (2013). Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J. Biol. Chem. 288, 29862–29871.10.1074/jbc.M113.499327Search in Google Scholar PubMed PubMed Central

Kempf, B. and Bremer, E. (1995). OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J. Biol. Chem. 270, 16701–16713.10.1074/jbc.270.28.16701Search in Google Scholar PubMed

Kempf, B. and Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch. Microbiol. 170, 319–330.10.1007/s002030050649Search in Google Scholar PubMed

Khare, D., Oldham, M.L., Orelle, C., Davidson, A.L., and Chen, J. (2009). Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536.10.1016/j.molcel.2009.01.035Search in Google Scholar PubMed PubMed Central

Kim, H., Youn, S.J., Kim, S.O., Ko, J., Lee, J.O., and Choi, B.S. (2015). Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J. Biol. Chem. 290, 16393–16402.10.1074/jbc.M115.641340Search in Google Scholar PubMed PubMed Central

Kohlstedt, M., Sappa, P.K., Meyer, H., Maass, S., Zaprasis, A., Hoffmann, T., Becker, J., Steil, L., Hecker, M., van Dijl, J.M., et al. (2014). Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ. Microbiol. 16, 1898–1917.10.1111/1462-2920.12438Search in Google Scholar PubMed

Kojima, S. and Nikaido, H. (2014). High salt concentrations increase permeability through OmpC channels of Escherichia coli. J. Biol. Chem. 289, 26464–25473.10.1074/jbc.M114.585869Search in Google Scholar PubMed PubMed Central

Krämer, R. (2010). Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem. Rec. 10, 217–229.10.1002/tcr.201000005Search in Google Scholar PubMed

Krämer, R. and Morbach, S. (2004). BetP of Corynebacterium glutamicum, a transporter with three different functions: betaine transport, osmosensing, and osmoregulation. Biochim. Biophys. Acta 1658, 31–36.10.1016/j.bbabio.2004.05.006Search in Google Scholar PubMed

Lamark, T., Styrvold, O.B., and Strom, A.R. (1992). Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiol. Lett. 75, 149–154.10.1111/j.1574-6968.1992.tb05408.xSearch in Google Scholar

Lee, C.H., Wu, T.Y., and Shaw, G.C. (2013). Involvement of OpcR, a GbsR-type transcriptional regulator, in negative regulation of two evolutionarily closely related choline uptake genes in Bacillus subtilis. Microbiology 159, 2087–2096.10.1099/mic.0.067074-0Search in Google Scholar PubMed

Levina, N., Totemeyer, S., Stokes, N.R., Louis, P., Jones, M.A., and Booth, I.R. (1999). Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737.10.1093/emboj/18.7.1730Search in Google Scholar PubMed PubMed Central

Mahadevi, A.S., and Sastry, G.N. (2013). Cation-pi interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138.10.1021/cr300222dSearch in Google Scholar PubMed

Mandic-Mulec, I., Stefanic, P., and van Elsas, J.D. (2015). Ecology of Bacillaceae. Microbiol Spectr 3, TBS-0017-2013.10.1128/9781555819323.ch3Search in Google Scholar

Maximov, S., Ott, V., Belkoura, L., and Kramer, R. (2014). Stimulus analysis of BetP activation under in vivo conditions. Biochim. Biophys Acta 1838, 1288–1295.10.1016/j.bbamem.2013.12.017Search in Google Scholar

Mikkat, S. and Hagemann, M. (2000). Molecular analysis of the ggtBCD gene cluster of Synechocystis sp. strain PCC6803 encoding subunits of an ABC transporter for osmoprotective compounds. Arch. Microbiol. 174, 273–282.10.1007/s002030000201Search in Google Scholar

Möker, N., Bröcker, M., Schaffer, S., Krämer, R., Morbach, S., and Bott, M. (2004). Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol. Microbiol. 54, 420–438.10.1111/j.1365-2958.2004.04249.xSearch in Google Scholar

Morbach, S. and Krämer, R. (2003). Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J. Biotechnol. 104, 69–75.10.1016/S0168-1656(03)00164-0Search in Google Scholar

Moscoso, J.A., Schramke, H., Zhang, Y., Tosi, T., Dehbi, A., Jung, K., and Grundling, A. (2016). Binding of cyclic di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter. J. Bacteriol. 198, 98–110.10.1128/JB.00480-15Search in Google Scholar PubMed PubMed Central

Moses, S., Sinner, T., Zaprasis, A., Stöveken, N., Hoffmann, T., Belitsky, B.R., Sonenshein, A.L., and Bremer, E. (2012). Proline utilization by Bacillus subtilis: uptake and catabolism. J. Bacteriol. 194, 745–758.10.1128/JB.06380-11Search in Google Scholar PubMed PubMed Central

Naismith, J.H. and Booth, I.R. (2012). Bacterial mechanosensitive channels-MscS: evolution’s solution to creating sensitivity in function. Annu. Rev. Biophys 41, 157–177.10.1146/annurev-biophys-101211-113227Search in Google Scholar PubMed PubMed Central

Nannapaneni, P., Hertwig, F., Depke, M., Hecker, M., Mader, U., Völker, U., Steil, L. and van Hijum, S.A. (2012). Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. Microbiology 158, 696–707.10.1099/mic.0.055434-0Search in Google Scholar PubMed

Nau-Wagner, G., Opper, D., Rolbetzki, A., Boch, J., Kempf, B., Hoffmann, T., and Bremer, E. (2012). Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J. Bacteriol. 194, 2703–2714.10.1128/JB.06642-11Search in Google Scholar PubMed PubMed Central

Nelson, J.W., Sudarsan, N., Furukawa, K., Weinberg, Z., Wang, J.X., and Breaker, R.R. (2013). Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9, 834–839.10.1038/nchembio.1363Search in Google Scholar PubMed PubMed Central

Nyyssölä, A. and Leisola, M. (2001). Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch. Microbiol. 176, 294–300.10.1007/s002030100325Search in Google Scholar PubMed

Ogura, M., Tsukahara, K., Hayashi, K., and Tanaka, T. (2007). The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion. Microbiology 153, 667–675.10.1099/mic.0.2006/003673-0Search in Google Scholar PubMed

Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. Env. Microbiol. 13, 1908–1923.10.1111/j.1462-2920.2010.02365.xSearch in Google Scholar PubMed

Oren, A. (2013). Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315.10.3389/fmicb.2013.00315Search in Google Scholar PubMed PubMed Central

Oswald, C., Smits, S.H., Höing, M., Sohn-Bösser, L., Dupont, L., Le Rudulier, D., Schmitt, L., and Bremer, E. (2008). Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J. Biol. Chem. 283, 32848–32859.10.1074/jbc.M806021200Search in Google Scholar PubMed

Oswald, C., Smits, S.H., Hoing, M., Bremer, E., and Schmitt, L. (2009). Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation. Biol. Chem. 390, 1163–1170.10.1515/BC.2009.113Search in Google Scholar PubMed

Ott, V., Koch, J., Spate, K., Morbach, S., and Kramer, R. (2008). Regulatory properties and interaction of the C- and N-terminal domains of BetP, an osmoregulated betaine transporter from Corynebacterium glutamicum. Biochemistry 47, 12208–12218.10.1021/bi801325rSearch in Google Scholar PubMed

Patzlaff, J.S., van der Heide, T., and Poolman, B. (2003). The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551.10.1074/jbc.M304796200Search in Google Scholar PubMed

Perez, C., Koshy, C., Yildiz, O., and Ziegler, C. (2012). Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126–130.10.1038/nature11403Search in Google Scholar PubMed

Perez, C., Faust, B., Mehdipour, A.R., Francesconi, K.A., Forrest, L.R., and Ziegler, C. (2014). Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling. Nat. Commun. 5, 4231.10.1038/ncomms5231Search in Google Scholar

Peter, H., Burkovski, A., and Kramer, R. (1996). Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J. Bacteriol. 178, 5229–5234.10.1128/jb.178.17.5229-5234.1996Search in Google Scholar

Pittelkow, M., Tschapek, B., Smits, S.H., Schmitt, L., and Bremer, E. (2011). The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J. Mol. Biol. 411, 53–67.10.1016/j.jmb.2011.05.037Search in Google Scholar

Pragai, Z., Eschevins, C., Bron, S., and Harwood, C.R. (2001). Bacillus subtilis NhaC, an Na+/H+ antiporter, influences expression of the phoPR operon and production of alkaline phosphatases. J. Bacteriol. 183, 2505–2515.10.1128/JB.183.8.2505-2515.2001Search in Google Scholar

Record, M.T., Jr., Courtenay, E.S., Cayley, D.S., and Guttman, H.J. (1998). Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23, 143–148.10.1016/S0968-0004(98)01196-7Search in Google Scholar

Ren, A. and Patel, D.J. (2014). c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10, 780–786.10.1038/nchembio.1606Search in Google Scholar PubMed PubMed Central

Ressl, S., van Scheltinga, A.C.T., Vonrhein, C., Ott, V., and Ziegler, C. (2009). Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–53.10.1038/nature07819Search in Google Scholar PubMed

Reuter, M., Hayward, N.J., Black, S.S., Miller, S., Dryden, D.T., and Booth, I.R. (2014). Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper? J. R. Soc. Interface 11, 20130850.10.1098/rsif.2013.0850Search in Google Scholar PubMed PubMed Central

Roesser, M. and Müller, V. (2001). Osmoadaptation in bacteria and archaea: common principles and differences. Env. Microbiol. 3, 743–754.10.1046/j.1462-2920.2001.00252.xSearch in Google Scholar PubMed

Rubinstein, S.M., Kolodkin-Gal, I., McLoon, A., Chai, L., Kolter, R., Losick, R., and Weitz, D.A. (2012). Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Mol. Microbiol. 86, 426–436.10.1111/j.1365-2958.2012.08201.xSearch in Google Scholar PubMed PubMed Central

Schiefner, A., Breed, J., Bösser, L., Kneip, S., Gade, J., Holtmann, G., Diederichs, K., Welte, W., and Bremer, E. (2004a). Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J. Biol. Chem. 279, 5588–5596.10.1074/jbc.M309771200Search in Google Scholar

Schiefner, A., Holtmann, G., Diederichs, K., Welte, W., and Bremer, E. (2004b). Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem. 279, 48270–48281.10.1074/jbc.M403540200Search in Google Scholar

Schiller, D., Kramer, R., and Morbach, S. (2004). Cation specificity of osmosensing by the betaine carrier BetP of Corynebacterium glutamicum. FEBS Lett. 563, 108–112.10.1016/S0014-5793(04)00279-0Search in Google Scholar

Schumann, W. (2003). The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8, 207–217.10.1379/1466-1268(2003)008<0207:TBSHSS>2.0.CO;2Search in Google Scholar

Schuster, C.F., Bellows, L.E., Tosi, T., Campeotto, I., Corrigan, R.M., Freemont, P., and Gründling, A. (2016). The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus. Sci. Signal. (in press). doi: 10.1126/scisignal.aaf7279.10.1126/scisignal.aaf7279Search in Google Scholar

Seminara, A., Angelini, T.E., Wilking, J.N., Vlamakis, H., Ebrahim, S., Kolter, R., Weitz, D.A., and Brenner, M.P. (2012). Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl. Acad. Sci. USA 109, 1116–1121.10.1073/pnas.1109261108Search in Google Scholar

Setlow, P. (2014). Spore resistance properties. Microbiol. Spectr. 2, TBS-0003-2012.10.1128/9781555819323.ch10Search in Google Scholar

Smits, S.H., Höing, M., Lecher, J., Jebbar, M., Schmitt, L., and Bremer, E. (2008). The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. J. Bacteriol. 190, 5663–5671.10.1128/JB.00346-08Search in Google Scholar

Spiegelhalter, F. and Bremer, E. (1998). Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters. Mol. Microbiol. 29, 285–296.10.1046/j.1365-2958.1998.00929.xSearch in Google Scholar

Steil, L., Hoffmann, T., Budde, I., Völker, U., and Bremer, E. (2003). Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J. Bacteriol. 185, 6358–6370.10.1128/JB.185.21.6358-6370.2003Search in Google Scholar

Street, T.O., Bolen, D.W., and Rose, G.D. (2006). A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 103, 13997–14002.10.1073/pnas.0606236103Search in Google Scholar PubMed PubMed Central

Street, T.O., Krukenberg, K.A., Rosgen, J., Bolen, D.W., and Agard, D.A. (2010). Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci. 19, 57–65.10.1002/pro.282Search in Google Scholar PubMed PubMed Central

Swartz, T.H., Ikewada, S., Ishikawa, O., Ito, M., and Krulwich, T.A. (2005). The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9, 345–354.10.1007/s00792-005-0451-6Search in Google Scholar PubMed

Szollosi, A., Vieira-Pires, R.S., Teixeira-Duarte, C.M., Rocha, R., and Morais-Cabral, J.H. (2016). Dissecting the molecular mechanism of nucleotide-dependent activation of the KtrAB K+ transporter. PLoS Biol. 14, e1002356.10.1371/journal.pbio.1002356Search in Google Scholar PubMed PubMed Central

Tanghe, A., Van Dijck, P., and Thevelein, J.M. (2006). Why do microorganisms have aquaporins? Trends Microbiol. 14, 78–85.10.1016/j.tim.2005.12.001Search in Google Scholar PubMed

Tschapek, B., Pittelkow, M., Sohn-Bösser, L., Holtmann, G., Smits, S.H., Gohlke, H., Bremer, E., and Schmitt, L. (2011). Arg149 is involved in switching the low affinity, open state of the binding protein AfProX into its high affinity, closed state. J. Mol. Biol. 411, 36–52.10.1016/j.jmb.2011.05.039Search in Google Scholar PubMed

Typas, A., Banzhaf, M., Gross, C.A., and Vollmer, W. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136.10.1038/nrmicro2677Search in Google Scholar PubMed PubMed Central

van Kessel, J.C., Rutherford, S.T., Cong, J.P., Quinodoz, S., Healy, J., and Bassler, B.L. (2015). Quorum sensing regulates the osmotic stress response in Vibrio harveyi. J. Bacteriol. 197, 73–80.10.1128/JB.02246-14Search in Google Scholar PubMed PubMed Central

Vieira-Pires, R.S., Szollosi, A., and Morais-Cabral, J.H. (2013). The structure of the KtrAB potassium transporter. Nature 496, 323–328.10.1038/nature12055Search in Google Scholar PubMed

Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., and Kolter, R. (2013). Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168.10.1038/nrmicro2960Search in Google Scholar PubMed PubMed Central

von Blohn, C., Kempf, B., Kappes, R.M., and Bremer, E. (1997). Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol. Microbiol. 25, 175–187.10.1046/j.1365-2958.1997.4441809.xSearch in Google Scholar PubMed

Wahome, P.G., Cowan, A.E., Setlow, B., and Setlow, P. (2009). Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Arch. Microbiol. 191, 403–414.10.1007/s00203-009-0465-zSearch in Google Scholar PubMed

Walton, T.A., Idigo, C.A., Herrera, N., and Rees, D.C. (2015). MscL: channeling membrane tension. Pflüger’s Arch. 467, 15–25.10.1007/s00424-014-1535-xSearch in Google Scholar PubMed PubMed Central

Wang, W., Black, S.S., Edwards, M.D., Miller, S., Morrison, E.L., Bartlett, W., Dong, C., Naismith, J.H., and Booth, I.R. (2008). The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution. Science 321, 1179–1183.10.1126/science.1159262Search in Google Scholar PubMed PubMed Central

Warren, C.R. (2014). Response of osmolytes in soil to drying and rewetting. Soil Biol. Biochem. 70, 22–32.10.1016/j.soilbio.2013.12.008Search in Google Scholar

Watson, P.Y. and Fedor, M.J. (2012). The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nat. Chem. Biol. 8, 963–965.10.1038/nchembio.1095Search in Google Scholar PubMed

Welsh, D.T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 24, 263–290.10.1111/j.1574-6976.2000.tb00542.xSearch in Google Scholar PubMed

Whatmore, A.M. and Reed, R.H. (1990). Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol. 136, 2521–2526.10.1099/00221287-136-12-2521Search in Google Scholar PubMed

Whatmore, A.M., Chudek, J.A., and Reed, R.H. (1990). The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol. 136, 2527–2535.10.1099/00221287-136-12-2527Search in Google Scholar PubMed

Widderich, N., Rodrigues, C.D., Commichau, F.M., Fischer, K.E., Ramirez-Guadiana, F.H., Rudner, D.Z., and Bremer, E. (2016). Salt-sensitivity of sigma(H) and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation. Mol. Microbiol. 100, 108–124.10.1111/mmi.13304Search in Google Scholar PubMed PubMed Central

Winkelman, J.T., Bree, A.C., Bate, A.R., Eichenberger, P., Gourse, R.L., and Kearns, D.B. (2013). RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. Mol. Microbiol. 88, 984–997.10.1111/mmi.12235Search in Google Scholar

Wolters, J.C., Berntsson, R.P., Gul, N., Karasawa, A., Thunnissen, A.M., Slotboom, D.J., and Poolman, B. (2010). Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 5, e10361.10.1371/journal.pone.0010361Search in Google Scholar

Wood, J.M. (2011). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 65, 215–238.10.1146/annurev-micro-090110-102815Search in Google Scholar

Wood, J.M., Bremer, E., Csonka, L.N., Krämer, R., Poolman, B., van der Heide, T., and Smith, L.T. (2001). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. Part A Mol. Int. Physiol. 130, 437–460.10.1016/S1095-6433(01)00442-1Search in Google Scholar

Yancey, P.H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830.10.1242/jeb.01730Search in Google Scholar PubMed

Yang, Y., Pollard, A.M., Hofler, C., Poschet, G., Wirtz, M., Hell, R., and Sourjik, V. (2015). Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 96, 1272–1282.10.1111/mmi.13006Search in Google Scholar PubMed PubMed Central

Ye, S., Li, Y., and Jiang, Y. (2010). Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Nat. Struct. Mol. Biol 17, 1019–1023.10.1038/nsmb.1865Search in Google Scholar PubMed PubMed Central

Young, J.W., Locke, J.C., and Elowitz, M.B. (2013). Rate of environmental change determines stress response specificity. Proc. Natl. Acad. Sci. USA 110, 4140–4145.10.1073/pnas.1213060110Search in Google Scholar PubMed PubMed Central

Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., and Bremer, E. (2013). Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides. Appl. Environ. Microbiol. 79, 567–587.10.1128/AEM.01934-12Search in Google Scholar PubMed PubMed Central

Zaprasis, A., Hoffmann, T., Stannek, L., Gunka, K., Commichau, F.M., and Bremer, E. (2014). The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis. J. Bacteriol. 196, 515–526.10.1128/JB.01128-13Search in Google Scholar PubMed PubMed Central

Zaprasis, A., Bleisteiner, M., Kerres, A., Hoffmann, T., and Bremer, E. (2015). Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis. Appl. Environ. Microbiol. 81, 250–259.10.1128/AEM.02797-14Search in Google Scholar

Zhu, Y., Pham, T.H., Nhiep, T.H., Vu, N.M., Marcellin, E., Chakrabortti, A., Wang, Y., Waanders, J., Lo, R., Huston, W.M., et al. (2016). Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol. Microbiol. 99, 1015–1027.10.1111/mmi.13281Search in Google Scholar

Ziegler, C., Bremer, E., and Krämer, R. (2010). The BCCT family of carriers: from physiology to crystal structure. Mol. Microbiol. 78, 13–34.10.1111/j.1365-2958.2010.07332.xSearch in Google Scholar

Zoratti, M., Petronilli, V., and Szabo, I. (1990). Stretch-activated composite ion channels in Bacillus subtilis. Biochem. Biophys. Res. Commun. 168, 443–450.10.1016/0006-291X(90)92341-VSearch in Google Scholar

Received: 2016-8-8
Accepted: 2016-8-29
Published Online: 2016-12-8
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0265/html
Scroll to top button