Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 398, Issue 3

Issues

Pokemon decreases the transcriptional activity of RARα in the absence of ligand

Yutao Yang
  • Corresponding author
  • Department of Neurobiology, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Major Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Beijing 100069, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yueting Li
  • Department of Neurobiology, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Major Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Beijing 100069, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fei Di / Jiajun Cui / Yue Wang / Zhi-Qing David Xu
  • Corresponding author
  • Department of Neurobiology, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Major Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Beijing 100069, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-19 | DOI: https://doi.org/10.1515/hsz-2016-0142

Abstract

Pokemon is a transcriptional repressor that belongs to the POZ and Krüppel (POK) protein family. In this study, we investigated the potential interaction between Pokemon and retinoic acid receptor alpha (RARα) and determined the role of Pokemon in regulation of RARα transcriptional activity in the absence of ligand. We found that Pokemon could directly interact with RARα. Moreover, we demonstrated that Pokemon could decrease the transcriptional activity of RARα in the absence of ligand. Furthermore, we showed that Pokemon could repress the transcriptional activity of RARα by increasing the recruitment of nuclear receptor co-repressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) to the retinoic acid response element (RARE) element. Taken together, these data suggest that Pokemon is a novel partner of RARα that acts as a co-repressor to regulate RARα transcriptional activity in the absence of ligand.

This article offers supplementary material which is provided at the end of the article.

Keywords: interaction; Pokemon; RARα; transcriptional activity

References

  • Ahmad, K.F., Melnick, A., Lax, S., Bouchard, D., Liu, J., Kiang, C.L., Mayer, S., Takahashi, S., Licht, J.D., and Privé, G.G. (2003). Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell 12, 1551–1564.CrossrefGoogle Scholar

  • Altucci, L. and Gronemeyer, H. (2001). Nuclear receptors in cell life and death. Trends Endocrinol. Metab. 12, 460–468.Google Scholar

  • Aström, A., Pettersson, U., and Voorhees, J.J. (1992). Structure of the human cellular retinoic acid-binding protein II gene. Early transcriptional regulation by retinoic acid. J. Biol. Chem. 267, 25251–25255.Google Scholar

  • Bielli, P., Busà, R., Di Stasi, S.M., Munoz, M.J., Botti, F., Kornblihtt, A.R., and Sette, C. (2014). The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis. EMBO Rep. 15, 419–427.Google Scholar

  • Chambon, P. (1996). A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954.Google Scholar

  • Chen, J.D. and Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457.Google Scholar

  • Choi, W.I., Jeon, B.N., Yun, C.O., Kim, P.H., Kim, S.E., Choi, K.Y., Kim, S.H., and Hur, M.W. (2009). Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1. J. Biol. Chem. 284, 12633–12644.Web of ScienceGoogle Scholar

  • Cui, J.J., Yang, Y.T., Zhang, C.F., Hu, P.L., Kan, W., Bai, X.H., Liu, X.L., Song, H.B. (2011). FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell. Mol. Life Sci. 68, 1091–1103.Web of ScienceGoogle Scholar

  • David, G., Alland, L., Hong, S.H., Wong, C.W., DePinho, R.A., and Dejean, A. (1998). Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 16, 2549–2556.CrossrefGoogle Scholar

  • Dobson, N.R., Moore, R.T., Tobin, J.E., and Armstrong, R.C. (2012). Leukemia/lymphoma-related factor regulates oligodendrocyte lineage cell differentiation in developing white matter. Glia 60, 1378–1390.Web of ScienceGoogle Scholar

  • Donato, L.J. and Noy, N. (2005) Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res. 65, 8193–8199.Google Scholar

  • Hörlein, A.J., Näär, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Söderstrom, M., Glass, C.K., et al. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor corepressor. Nature 377, 397–404.Google Scholar

  • Huynh, K.D. and Bardwell, V.J. (1998). The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17, 2473–2484.CrossrefGoogle Scholar

  • Jeon, B.N., Yoo, J.Y., Choi, W.I., Lee, C.E., Yoon, H.G., and Hur, M.W. (2008). Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. J. Biol. Chem. 283, 33199–33210.Google Scholar

  • Kukita, A., Kukita, T., Nagata, K., Teramachi, J., Li, Y.J., Yoshida, H., Miyamoto, H., Gay, S., Pessler, F., and Shobuike, T. (2011). The transcription factor FBI-1/OCZF/LRF is expressed in osteoclasts and regulates RANKL-induced osteoclast formation in vitro and in vivo. Arthritis Rheum. 63, 2744–2754.Google Scholar

  • Laudes, M., Bilkovski, R., Oberhauser, F., Droste, A., Gomolka, M., Leeser, U., Udelhoven, M., and Krone, W. (2008). Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4. J. Mol. Med. (Berl). 86, 597–608.Web of ScienceGoogle Scholar

  • Lee, D.K., Suh, D., Edenberg, H.J., and Hur, M.W. (2002). POZ domain transcription factor, FBI-1, repress transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of SP1. J. Biol. Chem. 277, 26761–26768.Google Scholar

  • Lee, D.K., Kang, J.E., Park, H.J., Kim, M.H., Yim, T.H., Kim, J.M., Heo, M.K., Kim, K.Y., Kwon, H.J., and Hur, M.W. (2005). FBI-1 enhances transcription of the nuclear factor-kappaB (NF-κB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-κB. J. Biol. Chem. 280, 27783–27791.Google Scholar

  • Maeda, T., Hobbs, R.M., and Pandolfi, P.P. (2005). The transcription factor Pokemon: a new key player in caner pathogenesis. Cancer Res. 65, 8575–8578.Google Scholar

  • Maeda, T., Ito, K., Merghoub, T., Poliseno, L., Hobbs, R.M., Wang, G., Dong, L., Maeda, M., Dore, L.C., Zelent, A., et al. (2009). LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev. Cell 17, 527–540.Google Scholar

  • Martin, P.J., Delmotte, M.H., Formstecher, P., and Lefebvre, P. (2003).PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl. Recept. 1, 6.Google Scholar

  • Melnick, A., Carlile, G., Ahmad, K.F., Kiang, C.L., Corcoran, C., Bardwell, V., Prive, G.G., and Licht, J.D. (2002). Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol. Cell. Biol. 22, 1804–1818.Google Scholar

  • Morrison, D.J., Pendergrast, P.S., Stavropoulos, P., Colmenares, S.U., Kobayashi, R., and Hernandez, N. (1999). FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein. Nucleic Acids Res. 27, 1251–1262.Google Scholar

  • Ross, S.A., McCaffery, P.J., Drager, U.C., and De Luca, L.M. (2000). Retinoids in embryonal development. Physiol. Rev. 80, 1021–1054.Google Scholar

  • Sucov, H.M. and Evans, R.M. (1995). Retinoic acid and retinoic acid receptors in development. Mol. Neurobiol. 10, 169–184.Google Scholar

  • Vreeland, A.C., Yu, S., Levi, L., de Barros Rossetto, D., and Noy, N. (2014) Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2. Mol. Cell. Biol. 34, 2135–2146.Web of ScienceGoogle Scholar

  • Weigel, N.L. and Zhang, Y. (1998). Ligand-independent activation of steroid hormone receptors. J. Mol. Med. (Berl). 76, 469–479.Google Scholar

  • Wendling, O., Ghyselinck, N.B., Chambon, P., and Mark, M. (2001). Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development 128, 2031–2038.Google Scholar

  • Yang, Y.T., Cui, J.J., Xue, F., Zhang, C.F., Mei, Z., Wang, Y., Bi, M.J., Shan, D.P., Meredith, A., Li, H., et al. (2015). Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. Biochim. Biophys. Acta Gene Regul. Mech. 1849, 270–281.Google Scholar

  • Zhao, H.L., Ueki, N., Marcelain, K., and Hayman, M.J. (2009). The Ski protein can inhibit ligand induced RARalpha and HDAC3 degradation in the retinoic acid signaling pathway. Biochem. Biophys. Res. Commun. 383, 119–124.Google Scholar

About the article

aYutao Yang and Yueting Li: These authors contributed equally to this work.


Received: 2016-02-21

Accepted: 2016-09-14

Published Online: 2016-09-19

Published in Print: 2017-03-01


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 31271154

Award identifier / Grant number: 31171032

We thank Dr Underhill TM for kindly providing RARE-Luc plasmid. This work was supported by the grant from the National Natural Science Foundation of China (31271154, 31171032), the Beijing Natural Science Foundation (7162016), the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201310025001), and the Basic Clinical Medical Research Cooperation Project of Capital Medical University (15JL52).


Citation Information: Biological Chemistry, Volume 398, Issue 3, Pages 331–340, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0142.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in