Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 398, Issue 4

Issues

The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease

Donna M. Small
  • Corresponding author
  • Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Declan F. Doherty
  • Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Caoifa M. Dougan
  • Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sinéad Weldon
  • Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Clifford C. Taggart
  • Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-17 | DOI: https://doi.org/10.1515/hsz-2016-0262

Abstract

Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.

Keywords: host defence; inflammation; lung disease; protease inhibitors

References

  • Alvarez, R., Reading, J., King, D.F.L., Hayes, M., Easterbrook, P., Farzaneh, F., Ressler, S., Yang, F., Rowley, D., and Vyakarnam, A. (2008). WFDC1/ps20 is a novel innate immunomodulatory signature protein of human immunodeficiency virus (HIV)-permissive CD4+ CD45RO+ memory T cells that promotes infection by upregulating CD54 integrin expression and is elevated in HIV type 1 infection. J. Virol. 82, 471–486.Google Scholar

  • Ameshima, S., Ishizaki, T., Demura, Y., Imamura, Y., Miyamori, I., and Mitsuhashi, H. (2000). Increased secretory leukoprotease inhibitor in patients with non small cell lung carcinoma. Cancer. 89, 1448–1456.Google Scholar

  • Andelid, K., Andersson, A., Yoshihara, S., Ahren, C., Jirholt, P., Ekberg-Jansson, A., and Lindén, A. (2015). Systemic signs of neutrophil mobilization during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 10, 1253–1263.Google Scholar

  • Assistance Publique – Hôpitaux de Paris. Biomarkers for Acute Graft-versus-host Disease (PLASMA-INCA). ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2014- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT02254798. NLM Identifier: NCT02254798.

  • Baranger, K., Zani, M-L., Chandenier, J., Dallet-Choisy, S., and Moreau, T. (2008). The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J. 275, 2008–2020.Google Scholar

  • Baranger, K., Zani, M.L., Labas, V., Dallet-Choisy, S., and Moreau, T. (2011). Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate. PLoS One 6, e20976.Google Scholar

  • Belkowski, S.M., Boot, J.D., Mascelli, M.A., Diamant, Z., de Garavilla, L., Hertzog, B., Polkovitch, D., Towers, M., Batheja, A., and D’Andrea, M.R. (2009). Cleaved secretory leucocyte protease inhibitor as a biomarker of chymase activity in allergic airway disease. Clin. Exp. Allergy. 39, 1179–1186.Google Scholar

  • Bingle, C.D. and Vyakarnam, A. (2008). Novel innate immune functions of the whey acidic protein family. Trends. Immunol. 29, 444–453.Google Scholar

  • Bingle, L., Tetley, T.D., and Bingle, C.D. (2001). Cytokine-mediated induction of the human elafin gene in pulmonary epithelial cells is regulated by nuclear factor-kappaB. Am. J. Respir. Cell. Mol. Biol. 25, 84–91.Google Scholar

  • Bingle, L., Singleton, V., and Bingle, C.D. (2002). The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms. Oncogene. 21, 2768–2773.Google Scholar

  • Bingle, L., Cross, S.S., High, A.S., Wallace, W.A., Rassl, D., Yuan, G., Hellstrom, I., Campos, M.A., and Bingle, C.D. (2006). WFDC2 (HE4): a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respir. Res. 7, 61.Google Scholar

  • Boston Medical Center. Vaginal Innate Immunity in Normal and HIV-Infected Women. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2010- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT01318304. NLM Identifier: NCT01318304.

  • Boudier, C. and Bieth, J.G. (1992). The proteinase: mucus proteinase inhibitor binding stoichiometry. J. Biol. Chem. 267, 4370–4375.Google Scholar

  • Brown, A., Farmer, K., MacDonald, L., Kalsheker, N., Pritchard, D., Haslett, C., Lamb, J., and Sallenave, J.M. (2003). House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am. J. Respir. Cell. Mol. Biol. 29, 381–389.Google Scholar

  • Butler, M.W., Robertson, I., Greene, C.M., O’Neill, S.J., Taggart, C.C., and McElvaney, N.G. (2006). Elafin prevents lipopolysaccharide-induced AP-1 and NF-kappaB activation via an effect on the ubiquitin-proteasome pathway. J. Biol. Chem. 281, 34730–34735.Google Scholar

  • Camper, N., Glasgow, A.M.A., Osbourn, M., Quinn, D.J., Small, D.M., McLean, D.T., Lundy, F.T., Elborn, J.S., McNally, P., Ingram, R.J., et al. (2016). A secretory leukocyte protease inhibitor variant with improved activity against lung infection. Mucosal Immunology. 9, 669–676.Google Scholar

  • Center for International Blood and Marrow Transplant Research. Collaborators: Pediatric Blood and Marrow Transplant Consortium. National Marrow Donor Program. Natural History and Biology of Long-Term Late Effects Following Hematopoietic Cell Transplant for Childhood Hematologic Malignancies. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2015- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT02338479. NLM Identifier: NCT02338479.

  • Cheng, D., Sun, Y., and He, H. (2015). The diagnostic accuracy of HE4 in lung cancer: a meta-analysis. Dis. Markers. 2015, 352670.Google Scholar

  • Chhikara, N., Saraswat, M., Tomar, A.K., Dey, S., Singh, S., and Yadav, S. (2012). Human epididymis protein-4 (HE-4): a novel cross-class protease inhibitor. PLoS One 7, e47672.Google Scholar

  • Choy, C. and Kim, S-H. (2010). Biological actions and interactions of anosmin-1. Front. Horm. Res. 39, 78–93.Google Scholar

  • Clauss, A., Lilja, H., and Lundwall, A. (2002). A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem. J. 368, 233–242.Google Scholar

  • Clauss, A., Persson, M., Lilja, H., and Lundwall, A. (2011). Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products. BMC Biochem. 12, 55.Google Scholar

  • Curvelo, J.A., Barreto, A.L., Portela, M.B., Alviano, D.S., Holandino, C., Souto-Padron, T., and Soares, R.M. (2014). Effect of the secretory leucocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: a therapeutic alternative? Arch. Oral Biol. 59, 928–937.Google Scholar

  • Cutting, G.R. (2015). Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16, 45–56.Google Scholar

  • Daccord, C. and Maher, T.M. (2016). Recent advances in understanding idiopathic pulmonary fibrosis. F1000Res. 5, (F1000 Faculty Rev):1046.Google Scholar

  • Desai, M. and Oppenheimer, J. (2016). Elucidating asthma phenotypes and endotypes: progress towards personalized medicine. Ann. Allergy. Asthma. Immunol. 116, 394–401.Google Scholar

  • Devoogdt, N., Hassanzadeh Ghassabeh, G., Zhang, J., Brys, L., De Baetselier, P., and Revets, H. (2003). Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells. Proc. Natl. Acad. Sci. 100, 5778–5782.Google Scholar

  • Devoogdt, N., Revets, H., Kindt, A., Liu, Y.Q., De Baetselier, P., and Ghassabeh, G.H. (2006). The tumor-promoting effect of TNF-alpha involves the induction of secretory leukocyte protease inhibitor. J. Immunol. 177, 8046–8052.Google Scholar

  • Dougherty, R.H. and Fahy, J.V. (2009). Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin. Exp. Allergy. 39, 193–202.Google Scholar

  • Draijer, C., Hylkema, M.N., Boorsma, C.E., Klok, P.A., Robbe, P., Timens, W., Postma, D.S., Greene, C.M., and Melgert, B.N. (2016). Sexual maturation protects against development of lung inflammation through estrogen. Am. J. Physiol. Lung. Cell. Mol. Physiol. 310, 166–174.Google Scholar

  • Drannik, A.G., Henrick, B.M., and Rosenthal, K.L. (2011). War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem. Soc. Trans. 39, 1427–1432.Google Scholar

  • Drannik, A.G., Nag, K., Sallenave, J.M., and Rosenthal, K.L. (2013). Antiviral activity of trappin-2 and elafin in vitro and in vivo against genital herpes. J. Virol. 87, 7526–7538.Google Scholar

  • Drenth, J., Low, B.W., Richardson, J.S., and Wright, C.S. (1980). The toxin-agglutinin fold. A new group of small protein structures organized around a four-disulfide core. J. Biol. Chem. 255, 2652–2655.Google Scholar

  • Eisenberg, S.P., Hale, K.K., Heimdal, P., and Thompson, R.C. (1990). Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J. Biol. Chem. 265, 7976–7981.Google Scholar

  • Escudero, J.M., Auge, J.M., Filella, X., Torne, A., Pahisa, J., and Molina, R. (2011). Comparison of serum human epididymis protein 4 with cancer antigen 125 as a tumor marker in patients with malignant and non-malignant diseases. Clin. Chem. 57, 1534–1544.Google Scholar

  • Farady, C.J. and Craik, C.S. (2010). Mechanisms of Macromolecular Protease Inhibitors. Chem. BioChem. 11, 2341–2346.Google Scholar

  • Ferreira, Z., Seixas, S., Andrés, A.M., Kretzschmar, W.W., Mullikin, J.C., Cherukuri, P.F., Cruz, P., Swanson, W.J., Clark, A.G., Green, E.D., et al. (2013). Reproduction and immunity-driven natural selection in the human WFDC locus. Mol. Biol. Evol. 30, 938–950.Google Scholar

  • Foreman, M.G., Campos, M., and Celedón, J.C. (2012). Genes and chronic obstructive pulmonary disease. Med. Clin. North Am. 96, 699–711.Google Scholar

  • Francart, C., Dauchez, M., Alix, A.J., and Lippens, G. (1997). Solution structure of R-elafin, a specific inhibitor of elastase. J. Mol. Biol. 268, 666–677.Google Scholar

  • Galgano, M.T., Hampton, G.M., and Frierson, H.F. (2006). Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 19, 847–853.Google Scholar

  • Geraghty, P. Rogan, M.P., Greene, C.M., Brantly, M.L., O’Neill, S.J., Taggart, C.C., and McElvaney, N.G. (2008). Alpha-one antitrypsin aerosolized augmentation abrogates neutrophil elastase induced expression of Cathepsin B and Matrix Metalloprotease 2 in vivo and in vitro. Thorax. 63, 621–626.Google Scholar

  • Glasgow, A.M.A., Small, D.M., Scott, A., McLean, D.T., Camper, N., Hamid, U., Hegarty, S., Parekh, D., O’Kane, C., Lundy, F.T., et al. (2015). A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the regulation of the inflammatory response in the lung. Thorax. 70, 426–432.Google Scholar

  • Gompertz, S., Bayley, D.L., Hill, S.L., and Stockley, R.A. (2001). Relationship between airway inflammation and the frequency of exacerbations in patients with smoking related COPD. Thorax. 56, 36–41.Google Scholar

  • Grutter, M.G., Fendrich, G., Huber, R., and Bode, W. (1988). The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin. EMBO J. 7, 345–351.Google Scholar

  • Guyot, N., Zani, M.-L., Maurel, M-C., Dallet-Choisy, S., and Moreau, T. (2005). Elafin and its precursor trappin-2 still inhibit neutrophil serine proteinases when they are covalently bound to extracellular matrix proteins by tissue transglutaminase. Biochemistry 44, 15610–15618.Google Scholar

  • Guyot, N., Butler, M.W., McNally, P., Weldon, S., Greene, C.M., Levine, R.L., O’Neill, S.J., Taggart, C.C., and McElvaney, N.G. (2008). Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J. Biol. Chem. 283, 32377–32385.Google Scholar

  • Habgood, A.N., Tatler, A.L., Porte, J., Wahl, S.M., Laurent, G.J., John, A.E., Johnson, S.R., and Jenkins, G. (2016). Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not the development of pulmonary fibrosis. Labor. Invest. 96, 623–631.Google Scholar

  • Hagiwara, K., Kikuchi, T., Endo, Y., Huqun, Usui, K., Takahashi, M., Shibata, N., Kusakabe, T., Xin, H., Hoshi, S., et al. (2003). Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J. Immunol. 170, 1973–1979.Google Scholar

  • Hellström, I., Raycraft, J., Hayden-Ledbetter, M., Ledbetter, J.A., Schummer, M., McIntosh, M., Drescher, C., Urban, N., and Hellström, K.E. (2003). The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 63, 3695–3700.Google Scholar

  • Hiemstra, P.S., Maassen, R.J., Stolk, J., Heinzel-Wieland, R., Steffens, G.J., and Dijkman, J.H. (1996). Antibacterial activity of antileukoprotease. Infect. Immun. 64, 4520–4524.Google Scholar

  • Hocini, H., Becquart, P., Bouhlal, H., Adle-Biassette, H., Kazatchkine, M.D., and Belec, L. (2000). Secretory leukocyte protease inhibitor inhibits infection of monocytes and lymphocytes with human immunodeficiency virus type 1 but does not interfere with transcytosis of cell-associated virus across tight epithelial barriers. Clin. Diagn. Lab. Immunol. 7, 515–518.Google Scholar

  • Hollander, C., Sitkauskiene, B., Sakalauskas, R., Westin, U., and Janciauskiene, S.M. (2007). Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Respir. Med. 101, 1947–1953.Google Scholar

  • Hua, L., Liu, Y., Zhen, S., Wan, D., Cao, J., and Gao, X. (2014). Expression and biochemical characterization of recombinant human epididymis protein 4. Protein Expr. Purif. 102, 52–62.Google Scholar

  • Hurle, B., Swanson, W., and Green, E.D. (2007). Comparative sequence analyses reveal rapid and divergent evolutionary changes of the WFDC locus in the primate lineage. Genome Res. 17, 276–286.Google Scholar

  • Icahn School of Medicine at Mount Sinai. Secukinumab for Treatment of Atopic Dermatitis. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2015- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT02594098. NLM Identifier: NCT02594098.

  • Imai, F.L., Uzawa, K., Miyakawa, A., Shiiba, M., and Tanzawa, H. (2001). A detailed deletion map of chromosome 20 in human oral squamous cell carcinoma. Int. J. Mol. Med. 7, 43–47.Google Scholar

  • Imperial College London. Collaborator: AstraZeneca. GR Defect in Sputum Cells in COPD. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2005- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT00159276. NLM Identifier: NCT00159276.

  • Iwahori, K., Suzuki, H., Kishi, Y., Fujii, Y., Uehara, R., Okamoto, N., Kobayashi, M., Hirashima, T., Kawase, I., and Naka, T. (2012). Serum HE4 as a diagnostic and prognostic marker for lung cancer. Tumour Biol. 33, 1141–1149.Google Scholar

  • James, H.L. and Cohen, A.B. (1978). Mechanism of inhibition of porcine elastase by human alpha-1-antitrypsin. J. Clin. Invest. 62, 1344–1353.Google Scholar

  • Jan Treda, C., Fukuhara, T., Suzuki, T., Nakamura, A., Zaini, J., Kikuchi, T., Ebina, M., and Nukiwa, T. (2014). Secretory leukocyte protease inhibitor modulates urethane-induced lung carcinogenesis. Carcinogenesis 35, 896–904.Google Scholar

  • Jin, F.Y., Nathan, C., Radzioch, D., and Ding, A. (1997). Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88, 417–426.Google Scholar

  • Jin, F., Nathan, C.F., Radzioch, D., and Ding, A. (1998). Lipopolysaccharide-related stimuli induce expression of the secretory leukocyte protease inhibitor, a macrophage-derived lipopolysaccharide inhibitor. Infect. Immun. 66, 2447–2452.Google Scholar

  • Kamei, M., Yamashita, S.-I., Tokuishi, K., Hashioto, T., Moroga, T., Suehiro, S., Ono, K., Miyawaki, M., Takeno, S., Yamamoto, S., et al. (2010). HE4 expression can be associated with lymph node metastases and disease-free survival in breast cancer. Anticancer Res. 30, 4779–4783.Google Scholar

  • Kammouni, W., Figarella, C., Baeza, N., Marchand, S., and Merten, M.D. (1997). Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells. Biochem. Biophys. Res. Commun. 241, 305–311.Google Scholar

  • Kerrin, A., Weldon, S., Chung, A.H., Craig, T., Simpson, A.J., O’Kane, C.M., McAuley, D.F., and Taggart, C.C. (2013). Proteolytic cleavage of elafin by 20S proteasome may contribute to inflammation in acute lung injury. Thorax. 68, 315–321.Google Scholar

  • Kikuchi, T., Abe, T., Hoshi, S., Matsubara, N., Tominaga, Y., Satoh, K., and Nukiwa T. (1998). Structure of the murine secretory leukoprotease inhibitor (Slpi) gene and chromosomal localization of the human and murine SLPI genes. Am. J. Respir. Cell. Mol. Biol. 19, 875–880.Google Scholar

  • Kirchhoff, C., Habben, I., Ivell, R., and Krull, N. (1991). A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol. Reprod. 45, 350–357.Google Scholar

  • Kondás, K., Szláma, G., Trexler, M., and Patthy, L. (2008). Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J. Biol. Chem. 283, 23677–23684.Google Scholar

  • Krowarsch, D., Cierpicki, T., Jelen, F., and Otlewski, J. (2003). Canonical protein inhibitors of serine proteases. Cell. Mol. Life Sci. 60, 2427–2444.Google Scholar

  • Lamy, P.-J., Plassot, C., and Pujol, J.-L. (2015). Serum HE4: an independent prognostic factor in non-small cell lung cancer. PLoS One 10, e0128836.Google Scholar

  • Larsen, M., Ressler, S.J., Lu, B., Gerdes, M.J., McBride, L., Dang, T.D., and Rowley, D.R. (1998). Molecular cloning and expression of ps20 growth inhibitor. A novel WAP-type “four-disulfide core” domain protein expressed in smooth muscle. J. Biol. Chem. 273, 4574–4584.Google Scholar

  • Laurell, C.B. and Eriksson, S. (1963). The electrophoretic α;1-globulin pattern of serum in α;1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15, 132–140.Google Scholar

  • LeBleu, V.S., Teng, Y., O’Connell, J.T., Charytan, D., Müller, G.A., Müller, C.A., Sugimoto, H., and Kalluri, R. (2013). Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 19, 227–231.Google Scholar

  • Lentsch, A.B., Jordan, J.A., Czermak, B.J., Diehl, K.M., Younkin, E.M., Sarma, V., and Ward, P.A. (1999). Inhibition of NF-kappaB activation and augmentation of IkappaBbeta by secretory leukocyte protease inhibitor during lung inflammation. Am. J. Pathol. 154, 239–247.Google Scholar

  • Liu, W., Yang, J., Chi, P.-D., Zheng, X., Dai, S.-Q., Chen, H., Xu, B.-L., and Liu, W.-L. (2013). Evaluating the clinical significance of serum HE4 levels in lung cancer and pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 17, 1346–1353.Google Scholar

  • Lundwall, Å. and Clauss, A. (2002). Identification of a novel protease inhibitor gene that is highly expressed in the prostate. Biochem. Biophys. Res. Commun. 290, 452–456.Google Scholar

  • Lundwall, Å. and Clauss, A. (2011). Genes encoding WFDC- and Kunitz-type protease inhibitor domains: are they related? Biochem. Soc. Trans. 39, 1398–1402.Google Scholar

  • Majchrzak-Gorecka, M., Majewski, P., Grygier, B., Murzyn, K., and Cichy, J. (2015). Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 28, 79–93.Google Scholar

  • Mallia, P., Footitt, J., Sotero, R., Jepson, A., Contoli, M., Trujillo-Torralbo, M.-B., Kebadze, T., Aniscenko, J., Oleszkiewicz, G., Gray, K., et al. (2012). Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186, 1117–1124.Google Scholar

  • Marino, R., Thuraisingam, T., Camateros, P., Kanagaratham, C., Xu, Y.Z., Henri, J., Yang, J., He, G., Ding, A., Radzioch, D. (2011). Secretory leukocyte protease inhibitor plays an important role in the regulation of allergic asthma in mice. J. Immunol. 186, 4433–4442.Google Scholar

  • McCrudden, M.T.C., Dafforn, T.R., Houston, D.F., Turkington, P.T., and Timson, D.J. (2008). Functional domains of the human epididymal protease inhibitor, eppin. FEBS J. 275, 1742–1750.Google Scholar

  • McElvaney, N.G., Nakamura, H., Birrer, P., Hébert, C.A., Wong, W.L., Alphonso, M., Baker, J.B., Catalano, M.A., and Crystal, R.G. (1992). Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 90, 1296–1301.Google Scholar

  • McNeely, T.B., Dealy, M., Dripps, D.J., Orenstein, J.M., Eisenberg, S.P., and Wahl, S.M. (1995). Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96, 456–464.Google Scholar

  • Meyer-Hoffert, U., Wichmann, N., Schwichtenberg, L., White, P.C., and Wiedow, O. (2003). Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp. Dermatol. 12, 418–425.Google Scholar

  • Michelland, S., Gazzeri, S., Brambilla, E., and Robert-Nicoud, M. (1999). Comparison of chromosomal imbalances in neuroendocrine and non-small-cell lung carcinomas. Cancer Genet. Cytogenet. 114, 22–30.Google Scholar

  • Mihaila, A. and Tremblay, G.M. (2001). Human alveolar macrophages express elafin and secretory leukocyte protease inhibitor. Z. Naturforsch. C. 56, 291–297.Google Scholar

  • Mikami, Y., Iwase, T., Komiyama, Y., Matsumoto, N., Oki, H., and Komiyama, K. (2015). Secretory leukocyte protease inhibitor inhibits expression of polymeric immunoglobulin receptor via the NF-kappaB signaling pathway. Mol. Immunol. 67, 568–574.Google Scholar

  • Miller, K.W., Evans, R.J., Eisenberg, S.P., and Thompson, R.C. (1989). Secretory leukocyte protease inhibitor binding to mRNA and DNA as a possible cause of toxicity to Escherichia coli. J. Bacteriol. 171, 2166–2172.Google Scholar

  • Mitsuhashi, H., Asano, S., Nonaka, T., Hamamura, I., Masuda, K., and Kiyoki, M. (1996). Administration of truncated secretory leukoprotease inhibitor ameliorates bleomycin-induced pulmonary fibrosis in hamsters. Am. J. Respir. Crit. Care. Med. 153, 369–374.Google Scholar

  • Molhuizen, H.O., Alkemade, H.A., Zeeuwen, P.L., de Jongh, G.J., Wieringa, B., and Schalkwijk, J. (1993). SKALP/elafin: an elastase inhibitor from cultured human keratinocytes. Purification, cDNA sequence, and evidence for transglutaminase cross-linking. J. Biol. Chem. 268, 12028–12032.Google Scholar

  • Müller, U., Hentschel, J., Janhsen, W.K., Hunniger, K., Hipler, U.C., Sonnemann, J., Pfister, W., Böer, K., Lehmann, T., and Mainz, J.G. (2015). Changes of proteases, antiproteases, and pathogens in cystic fibrosis patients’ upper and lower airways after IV-antibiotic therapy. Mediators Inflamm. 2015, 626530.Google Scholar

  • Nagy, A., Trexler, M., Patthy, L. (2003). Expression, purification and characterization of the second Kunitz-type protease inhibitor domain of the human WFIKKN protein. Eur. J. Biochem. 270, 2101–2107.Google Scholar

  • Nagy, B., Fila, L., Clarke, L.A., Gönczy, F., Bede, O., Nagy, D., Újhelyi, R., Szabó, Á., Anghelyi, A., Major, M., et al. (2016). Human epididymis protein 4 (HE4): a novel serum inflammatory biomarker in cystic fibrosis. Chest 150, 661–672.Google Scholar

  • Nara, K., Ito, S., Ito, T., Suzuki, Y., Ghoneim, M.A., Tachibana, S., and Hirose, S. (1994). Elastase inhibitor elafin is a new type of proteinase inhibitor which has a transglutaminase-mediated anchoring sequence termed “cementoin. J. Biochem. 115, 441–448.Google Scholar

  • National Institute of Dental and Craniofacial Research (NIDCR). Effects of Topical SLPI on Skin Wounds. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [Cited 2016 July 08]. Available from: http://clinicaltrials.gov/ct2/show/NCT00005569. NLM Identifier: NCT00005569.

  • Oboki, K., Ohno, T., Kajiwara, N., Arae, K., Morita, H., Ishii, A., Nambu, A., Abe, T., Kiyonari, H., and Matsumoto, K. (2010). IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci. 107, 18581–18586.Google Scholar

  • O’Neal, R.L., Nam, K.T., LaFleur, B.J., Barlow, B., Nozaki, K., Lee, H-J., Kim, W.H., Yang, H-K., Shi, C., Maitra, A., et al. (2013). Human epididymis protein 4 is up-regulated in gastric and pancreatic adenocarcinomas. Hum. Pathol. 44, 734–742.Google Scholar

  • Orfanelli, T., Jayaram, A., Doulaveris, G., Forney, L.J., Ledger, W.J., and Witkin, S.S. (2014). Human epididymis protein 4 and secretory leukocyte protease inhibitor in vaginal fluid: relation to vaginal components and bacterial composition. Reprod. Sci. 21, 538–542.Google Scholar

  • Pant, S., Walters, E.H., Griffiths, A., Wood-Baker, R., Johns, D.P., and Reid, D.W. (2009). Airway inflammation and anti-protease defences rapidly improve during treatment of an acute exacerbation of COPD. Respirology 14, 495–503.Google Scholar

  • Petryszak, R., Keays, M., Tang, Y.A., Fonseca, N.A., Barrera, E., Burdett, T., Füllgrabe, A., Fuentes, A.M.-P., Jupp, S., Koskinen, S., et al. (2016). Expression Atlas update – an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44, D746–D752.CrossrefGoogle Scholar

  • Pfundt, R., Wingens, M., Bergers, M., Zweers, M., Frenken, M., and Schalkwijk, J. (2000). TNF-alpha and serum induce SKALP/elafin gene expression in human keratinocytes by a p38 MAP kinase-dependent pathway. Arch. Dermatol. Res. 292, 180–187.Google Scholar

  • Piletz, J.E., Heinlen, M., and Ganschow, R.E. (1981). Biochemical characterization of a novel whey protein from murine milk. J. Biol. Chem. 256, 11509–11516.Google Scholar

  • Proteo Incorporated (Inc). R&D news, Clinical development [Internet]. Available from: http://proteo.us/proteo-inc/r-und-d/clinical-development.html. Accessed 2016 July 08.

  • Ranganathan, S., Simpson, K.J., Shaw, D.C., and Nicholas, K.R. (1999). The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J. Mol. Graph. Model. 17, 106–113.Google Scholar

  • Rao, N.V., Wehner, N.G., Marshall, B.C., Gray, W.R., Gray, B.H., and Hoidal, J.R. (1991). Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J. Biol. Chem. 266, 9540–9548.Google Scholar

  • Raundhal, M., Morse, C., Khare, A., Oriss, T.B., Milosevic, J., Trudeau, J., Huff, R., Pilewski, J., Holguin, F., Kolls, J., et al. (2015). High IFN-gamma and low SLPI mark severe asthma in mice and humans. J. Clin. Invest. 125, 3037–3050.Google Scholar

  • Ressler, S.J. and Rowley, D.R. (2011). The WFDC1 gene: role in wound response and tissue homoeostasis. Biochem. Soc. Trans. 39, 1455–1459.Google Scholar

  • Rohde, G., Message, S.D., Haas, J.J., Kebadze, T., Parker, H., Laza-Stanca, V., Khaitov, M.R., Kon, O.M., Stanciu, L.A., Mallia, P., et al. (2014). CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations. Clin. Exp. Allergy. 44, 930–939.Google Scholar

  • Rudolphus, A., Heinzel-Wieland, R., Vincent, V.A.M.M., Saunders, D., Steffens, G.J., Dijkman, J.H., and Kramps, J.A. (1991). Oxidation-resistant variants of recombinant anti-leucoprotease are better inhibitors of human-neutrophil-elastase-induced emphysema in hamsters than natural recombinant antileucoprotease. Clin. Sci. 81, 777–784.Google Scholar

  • Sagel, S.D., Wagner, B.D., Anthony, M.M., Emmett. P., and Zemanick, E.T. (2012). Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am. J. Respir. Crit. Care. Med. 186, 857–865.Google Scholar

  • Sallenave, J.M. and Silva, A. (1993). Characterization and gene sequence of the precursor of elafin, an elastase-specific inhibitor in bronchial secretions. Am. J. Respir. Cell. Mol. Biol. 8, 439–445.Google Scholar

  • Sallenave, J.M., Marsden, M.D., and Ryle, A.P. (1992). Isolation of elafin and elastase-specific inhibitor (ESI) from bronchial secretions. Evidence of sequence homology and immunological cross-reactivity. Biol. Chem. Hoppe. Seyler. 373, 27–33.Google Scholar

  • Sallenave, J.M., Shulmann, J., Crossley, J., Jordana, M., and Gauldie, J. (1994). Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am. J. Respir. Cell Mol. Biol. 11, 733–741.Google Scholar

  • Sallenave, J.M., Donnelly, S.C., Grant, I.S., Robertson, C., Gauldie, J., and Haslett, C. (1999). Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome. Eur. Respir. J. 13, 1029–1036.Google Scholar

  • Schalkwijk, J., Chang, A., Janssen, P., De Jongh, G.J., and Mier, P.D. (1990). Skin-derived antileucoproteases (SKALPs): characterization of two new elastase inhibitors from psoriatic epidermis. Br. J. Dermatol. 122, 631–641.Google Scholar

  • Schalkwijk, J., de Roo, C., and de Jongh, G.J. (1991). Skin-derived antileukoproteinase (SKALP), an elastase inhibitor from human keratinocytes. Purification and biochemical properties. Biochim. Biophys. Acta. 1096, 148–154.Google Scholar

  • Schalkwijk, J., Wiedow, O., and Hirose, S. (1999). The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core. Biochem. J. 340, 569–577.Google Scholar

  • Schummer, M., Ng, W.V, Bumgarner, R.E., Nelson, P.S., Schummer, B., Bednarski, D.W., Hassell, L., Baldwin, R.L., Karlan, B.Y., and Hood, L. (1999). Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene. 238, 375–385.Google Scholar

  • Sham, J.S.T., Tang, TC-M., Fang, Y., Sun, L., Qin, L-X., Wu, Q-L., Xie, D., and Guan, X-Y. (2002). Recurrent chromosome alterations in primary ovarian carcinoma in Chinese women. Cancer Genet. Cytogenet. 133, 39–44.Google Scholar

  • Sigrist, C.J.A., de Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., and Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347.Google Scholar

  • Simpson, A.J., Maxwell, A.I., Govan, J.R., Haslett, C., and Sallenave, J.M. (1999). Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 452, 309–313.Google Scholar

  • Simpson, J.L., Scott, R.J., Boyle, M.J., and Gibson, P.G. (2005). Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am. J. Respir. Crit. Care. Med. 172, 559–565.Google Scholar

  • Small, D.M., Zani, M-L., Quinn, D.J., Dallet-Choisy, S., Glasgow, A.M., O’Kane, C., McAuley, D.F., McNally, P., Weldon, S., Moreau, T., et al. (2015). A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation. Mol. Ther. 1, 24–31.Google Scholar

  • Stockley, R.A. (2015). The multiple facets of alpha-1-antitrypsin. Ann. Transl. Med. 3, 130.Google Scholar

  • Sugino, T., Yamaguchi, T., Ogura, G., Kusakabe, T., Goodison, S., Homma, Y., and Suzuki, T. (2007). The secretory leukocyte protease inhibitor (SLPI) suppresses cancer cell invasion but promotes blood-borne metastasis via an invasion-independent pathway. J. Pathol. 212, 152–160.Google Scholar

  • Taggart, C.C., Lowe, G.J., Greene, C.M., Mulgrew, A.T., O’Neill, S.J., Levine, R.L., and McElvaney, N.G. (2001). Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J. Biol. Chem. 276, 33345–33352.Google Scholar

  • Taggart, C.C., Greene, C.M., McElvaney, N.G., and O’Neill, S. (2002). Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced IkappaBalpha degradation without affecting phosphorylation or ubiquitination. J. Biol. Chem. 277, 33648–33653.Google Scholar

  • Taggart, C.C., Cryan, S.A., Weldon, S., Gibbons, A., Greene, C.M., Kelly, E., Low, T.B., O’Neill, S.J., and McElvaney, N.G. (2005). Secretory leucoprotease inhibitor binds to NF-kappaB binding sites in monocytes and inhibits p65 binding. J. Exp. Med. 202, 1659–1668.Google Scholar

  • Tanner, M.M., Tirkkonen, M., Kallioniemi, A., Isola, J., Kuukasjarvi, T., Collins, C., Kowbel, D., Guan, X.-Y., Trent, J., Gray, J.W., et al. (1996). Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in guman breast cancer. Cancer Res. 56, 3441–3445.Google Scholar

  • Tateosian, N.L., Costa, M.J., Guerrieri, D., Barro, A., Mazzei, J.A., and Eduardo Chuluyan, H. (2012). Inflammatory mediators in exhaled breath condensate of healthy donors and exacerbated COPD patients. Cytokine. 58, 361–367.Google Scholar

  • Tejera, P., Wang, Z., Zhai, R., Su, L., Sheu, C.C., Taylor, D.M., Chen, F., Gong, M.N., Thompson, B.T., and Christiani, D.C. (2009). Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am. J. Respir. Cell. Mol. Biol. 41, 696–704.Google Scholar

  • Tejera, P., O’Mahony, D.S., Owen, C.A., Wei, Y., Wang, Z., Gupta, K., Su, L., Villar, J., Wurfel, M., and Christiani, D.C. (2014). Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome. Am. J. Respir. Cell. Mol. Biol. 51, 262–272.Google Scholar

  • Thompson, R.C. and Ohlsson, K. (1986). Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc. Natl. Acad. Sci. 83, 6692–6696.Google Scholar

  • Tokuishi, K., Yamashita, S., Ohbo, K., and Kawahara, K. (2012). Splice variant HE4-V3 expression is associated with favorable prognosis in pulmonary adenocarcinoma. Tumour Biol. 33, 103–109.Google Scholar

  • Tomee, J.F., Hiemstra, P.S., Heinzel-Wieland, R., and Kauffman, H.F. (1997). Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J. Infect. Dis. 176, 740–747.Google Scholar

  • Tsoumakidou, M., Bouloukaki, I., Thimaki, K., Tzanakis, N., and Siafakas, N.M. (2010) Innate immunity proteins in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Exp Lung Res. 36, 373–380.Google Scholar

  • Tsunemi, M., Kato, H., Nishiuchi, Y., Kumagaye, S., and Sakakibara, S. (1992). Synthesis and structure-activity relationships of elafin, an elastase-specific inhibitor. Biochem. Biophys. Res. Commun. 185, 967–973.Google Scholar

  • Verrier, T., Solhonne, B., Sallenave, J.-M., and Garcia-Verdugo, I. (2012). The WAP protein Trappin-2/Elafin: a handyman in the regulation of inflammatory and immune responses. Int. J. Biochem. Cell Biol. 44, 1377–1380.Google Scholar

  • Vos, J.B., van Sterkenburg, M.A., Rabe, K.F., Schalkwijk, J., Hiemstra, P.S., and Datson, N.A. (2005). Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense. Physiol. Genomics. 21, 324–336.Google Scholar

  • Wagenblast, E., Soto, M., Gutierrez-Angel, S., Hartl, C.A., Gable, A.L., Maceli, A.R., Erard, N., Williams, A.M., Kim, S.Y., Dickopf, S., et al. (2015). A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 520, 358–362.Google Scholar

  • Wang, Z., Beach, D., Su, L., Zhai, R., and Christiani, D.C. (2008). A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS. Am. J. Respir. Cell. Mol. Biol. 38, 724–732.Google Scholar

  • Wang, Z., Chen, F., Zhai, R., Zhang, L., Su, L., Lin, X., Thompson, T., and Christiani D.C. (2009). Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS One 4, e4380.Google Scholar

  • Weldon, S., McNally, P., McElvaney, N.G., Elborn, J.S., McAuley, D.F., Wartelle, J., Belaaouaj, A., Levine, R.L., and Taggart, C.C. (2009). Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J. Immunol. 183, 8148–8156.Google Scholar

  • Wenzel, S.E. (2012). Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18, 716–725.Google Scholar

  • Westin, U., Nyström, M., Ljungcrantz, I., Eriksson, B., and Ohlsson, K. (2002). The presence of elafin, SLPI, IL1-RA and STNFalpha RI in head and neck squamous cell carcinomas and their relation to the degree of tumour differentiation. Mediators Inflamm. 11, 7–12.Google Scholar

  • Wiedow, O., Schröder, J.M., Gregory, H., Young, J.A., and Christophers, E. (1990). Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J. Biol. Chem. 265, 14791–14795.Google Scholar

  • Wiedow, O., Lüademann, J., and Utecht, B. (1991). Elafin is a potent inhibitor of proteinase 3. Biochem. Biophys. Res. Commun. 174, 6–10.Google Scholar

  • Williams, S.E., Brown, T.I., Roghanian, A., and Sallenave, J.M. (2006). SLPI and elafin: one glove, many fingers. Clin. Sci. (Lond). 110, 21–35.Google Scholar

  • Yadam, S., Bihler, E., and Balaan, M. (2016). Acute Respiratory Distress Syndrome. Crit. Care. Nurs. Q. 39, 190–195.Google Scholar

  • Yenugu, S., Richardson, R.T., Sivashanmugam, P., Wang, Z., O’rand, M.G., French, F.S., and Hall, S.H. (2004). Antimicrobial activity of human EPPIN, an androgen-regulated, sperm-bound protein with a whey acidic protein motif. Biol. Reprod. 71, 1484–1490.Google Scholar

  • Yoshida, N., Egami, H., Yamashita, J., Takai, E., Tamori, Y., Fujino, N., Kitaoka, M., Schalkwijk, J., and Ogawa, M. (2002). Immunohistochemical expression of SKALP/elafin in squamous cell carcinoma of human lung. Oncol. Rep. 9, 495–501.Google Scholar

  • Zani, M.-L., Baranger, K., Guyot, N., Dallet-Choisy, S., and Moreau, T. (2009). Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci. 18, 579–594.Google Scholar

  • Zeeuwen, P.L., Hendriks, W., de Jong, W.W., and Schalkwijk, J. (1997). Identification and sequence analysis of two new members of the SKALP/elafin and SPAI-2 gene family. Biochemical properties of the transglutaminase substrate motif and suggestions for a new nomenclature. J. Biol. Chem. 272, 20471–20478.Google Scholar

  • Zelvyte, I., Wallmark, A., Piitulainen, E., Westin, U., and Janciauskiene, S. (2004). Increased plasma levels of serine proteinase inhibitors in lung cancer patients. Anticancer Res. 24, 241–247.Google Scholar

  • Zhu, H., Lam, D.C.L., Han, K.C., Tin, V.P.C., Suen, W.S., Wang, E., Lam, W.K., Cai. W.W., Chung, L.P., and Wong, M.P. (2007). High resolution analysis of genomic aberrations by metaphase and array comparative genomic hybridization identifies candidate tumour genes in lung cancer cell lines. Cancer Lett. 245, 303–314.Google Scholar

About the article

Corresponding author: Dr. Donna M. Small, Airway Innate Immunity Research (AiiR) Group, Centre for Experimental Medicine, The Wellcome – Wolfson Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland


Received: 2016-08-03

Accepted: 2016-10-13

Published Online: 2016-10-17

Published in Print: 2017-04-01


Citation Information: Biological Chemistry, Volume 398, Issue 4, Pages 425–440, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0262.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in