Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2017

Host target-based approaches against arboviral diseases

  • Rebeca Froes Rocha , Juliana Lemos Del Sarto , Rafael Elias Marques , Vivian Vasconcelos Costa and Mauro Martins Teixeira EMAIL logo
From the journal Biological Chemistry

Abstract

In the 20th century, socioeconomic and environmental changes facilitated the reintroduction of mosquitoes in developing cities, resulting in the reinsertion of mosquito-borne viral diseases and the dispersal of their causative agents on a worldwide scale. Recurrent outbreaks of arboviral diseases are being reported, even in regions without a previous history of arboviral disease transmission. Of note, arboviral infections represented approximately 30% of all emerging vector-borne diseases in the last decade. Therapeutic strategies against infectious viral diseases include the use of different classes of molecules that act directly on the pathogen and/or act by optimizing the host immune response. Drugs targeting the virus usually provide amelioration of symptoms by suppressing and controlling the infection. However, it is limited by the short-window of effectiveness, ineffectiveness against latent viruses, development of drug-resistant mutants and toxic side effects. Disease may also be a consequence of an excessive, uncontrolled or misplaced inflammatory response, treatments that interfere in host immune response are interesting options and can be used isolated or in combination with virus-targeted therapies. The use of host-targeted therapies requires specific knowledge regarding host immune patterns that may trigger dengue virus (DENV), chikungunya virus (CHIKV) or Zika virus (ZIKV) disease.

References

Aagaard, K.M., Lahon, A., Suter, M.A., Arya, R.P., Seferovic, M.D., Vogt, M.B., Hu, M., Stossi, F., Mancini, M.A., Harris, R.A., et al. (2017). Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication. Sci. Rep. 7, 41389.10.1038/srep41389Search in Google Scholar

Aliota, M.T., Caine, E.A., Walker, E.C., Larkin, K.E., Camacho, E., and Osorio, J.E. (2016). Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl. Trop. Dis. 10, e0004682.10.1371/journal.pntd.0004682Search in Google Scholar

Anaya, J.-M., Rodríguez, Y., Monsalve, D.M., Vega, D., Ojeda, E., González-Bravo, D., Rodríguez-Jiménez, M., Pinto-Díaz, C.A., Chaparro, P., Gunturiz, M.L., et al. (2017). A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cúcuta, Colombia. J. Autoimmun. 77, 123–138.10.1016/j.jaut.2016.12.007Search in Google Scholar

Andrade, D.V. and Harris, E. (2017). Recent advances in understanding the adaptative immune response to Zika virus and the effect of previous flavivirus exposure. Virus Res. pii: S0168-1702(17)30462-8.Search in Google Scholar

Arend, W.P. (2002). The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 13, 323–340.10.1016/S1359-6101(02)00020-5Search in Google Scholar

Aubry, M., Teissier, A., Huart, M., Merceron, S., Vanhomwegen, J., Roche, C., Vial, A.-L., Teururai, S., Sicard, S., Paulous, S., et al. (2017). Zika virus seroprevalence, French Polynesia, 2014–2015. Emerg. Infect. Dis. 23, 669–672.10.3201/eid2304.161549Search in Google Scholar PubMed PubMed Central

Ballendine, S.A., Greba, Q., Dawicki, W., Zhang, X., Gordon, J.R., and Howland, J.G. (2015). Behavioral alterations in rat offspring following maternal immune activation and ELR-CXC chemokine receptor antagonism during pregnancy: implications for neurodevelopmental psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 57, 155–165.10.1016/j.pnpbp.2014.11.002Search in Google Scholar PubMed PubMed Central

Bardina, S.V., Bunduc, P., Tripathi, S., Duehr, J., Frere, J.J., Brown, J.A., Nachbagauer, R., Foster, G.A., Krysztof, D., Tortorella, D., et al. (2017). Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180.10.1126/science.aal4365Search in Google Scholar PubMed PubMed Central

Barzon, L. and Pal, G. (2017). Current views on Zika virus vaccine development. Expert Opin. Biol. Ther. 17, 1185–1192.10.1080/14712598.2017.1346081Search in Google Scholar PubMed

Bayer, A., Lennemann, N., Ouyang, Y., Bramley, J., Morosky, S., Marques, E., Cherry, S., Sadovsky, Y., and Coyne, C. (2016). Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19, 705–712.10.1016/j.chom.2016.03.008Search in Google Scholar PubMed PubMed Central

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504–507.10.1038/nature12060Search in Google Scholar PubMed PubMed Central

Boldescu, V., Behnam, M.A.M., Vasilakis, N., and Klein, C.D. (2017). Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat. Rev. Drug Discov. 16, 565–586.10.1038/nrd.2017.33Search in Google Scholar PubMed PubMed Central

Bowen, J.R., Quicke, K.M., Maddur, M.S., O’Neal, J.T., McDonald, C.E., Fedorova, N.B., Puri, V., Shabman, R.S., Pulendran, B., and Suthar, M.S. (2017). Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog. 13, e1006164.10.1371/journal.ppat.1006164Search in Google Scholar PubMed PubMed Central

Campion, E.W., Weaver, S.C., and Lecuit, M. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372, 1231–1239.10.1056/NEJMra1406035Search in Google Scholar PubMed

Campos, G.S., Bandeira, A.C., and Sardi, S.I. (2015). Zika virus outbreak, Bahia, Brazil. Emerg. Infect. Dis. 21, 1885–1886.10.3201/eid2110.150847Search in Google Scholar PubMed PubMed Central

Cao-Lormeau, V.-M. (2014). Zika Virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 20, 1960–1960.10.3201/eid2011.141380Search in Google Scholar PubMed PubMed Central

Cao-Lormeau, V.-M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., et al. (2016). Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387, 1531–1539.10.1097/01.ogx.0000489564.35748.52Search in Google Scholar

Castanha, P.M.S., Nascimento, E.J.M., Braga, C., Cordeiro, M.T., de Carvalho, O.V, de Mendonça, L.R., Azevedo, E.A.N., França, R.F.O., Dhalia, R., and Marques, E.T.A. (2017). Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J. Infect. Dis. 215, 781–785.10.1093/infdis/jiw638Search in Google Scholar PubMed PubMed Central

Chang, Z., Spong, C.Y., Jesus, A.A., Davis, M.A., Plass, N., Stone, D.L., Chapelle, D., Hoffmann, P., Kastner, D.L., Barron, K., Goldbach-Mansky, R.T., and Stratton, P. (2014). Anakinra use during pregnancy in patients with cryopyrin-associated periodic syndromes (CAPS). Arthritis Rheumatol. 66, 3227–3232.10.1002/art.38811Search in Google Scholar PubMed PubMed Central

Chaudhary, V., Yuen, K.-S., Chan, J.F.-W., Chan, C.-P., Wang, P.-H., Cai, J.-P., Zhang, S., Liang, M., Kok, K.-H., Chan, C.-P., et al. (2017). Selective activation of type II interferon signaling by Zika virus NS5 protein. J. Virol. 91, e00163-17.10.1128/JVI.00163-17Search in Google Scholar PubMed PubMed Central

Chen, W., Foo, S.-S., Taylor, A., Lulla, A., Merits, A., Hueston, L., Forwood, M.R., Walsh, N.C., Sims, N.A., Herrero, L.J., et al. (2015). Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89, 581–593.10.1128/JVI.02034-14Search in Google Scholar PubMed PubMed Central

Chow, A., Her, Z., Ong, E.K.S., Chen, J.-M., Dimatatac, F., Kwek, D.J.C., Barkham, T., Yang, H., Renia, L., Leo, Y.-S., et al. (2011). Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203, 149–157.10.1093/infdis/jiq042Search in Google Scholar PubMed PubMed Central

Cohen, S., Hurd, E., Cush, J., Schiff, M., Weinblatt, M.E., Moreland, L.W., Kremer, J., Bear, M.B., Rich, W.J., and McCabe, D. (2002). Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624.10.1002/art.10141Search in Google Scholar PubMed

Corry, J., Arora, N., Good, C.A., Sadovsky, Y., and Coyne, C.B. (2017). Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. Proc. Natl. Acad. Sci. USA 35, 9433–9438.10.1073/pnas.1707513114Search in Google Scholar PubMed PubMed Central

Costa, V.V., Fagundes, C.T., Valadão, D.F., Cisalpino, D., Dias, A.C.F., Silveira, K.D., Kangussu, L.M., Ávila, T.V., Bonfim, M.R.Q., Bonaventura, D., et al. (2012). A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-γ in host resistance to infection. PLoS Negl. Trop. Dis. 6, e1663.10.1371/journal.pntd.0001663Search in Google Scholar PubMed PubMed Central

Costa, V.V., Fagundes, C.T., Souza D.G., Teixeira, M.M. (2013). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol. 182, 1950–1961.10.1016/j.ajpath.2013.02.027Search in Google Scholar PubMed

Costa, V.V., Fagundes, C.T., Valadao, D.F., Avila, T.V., Cosalpino, D., Rocha, R.F., Ribeiro, L.S., Ascencao, F.R., Kangussu, L.M., Celso M.Q. Jr., et al. (2014). Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med Microbiol Immunol. 203, 231–350.10.1007/s00430-014-0334-5Search in Google Scholar PubMed

Costa, V.V., Ye, W., Chen, Q., Teixeira, M.M., Preiser, P., Ooi, E.E., and Chen, J. (2017a) Dengue virus-infected dendritic cells, but not monocytes, activate natural killer cells through a contact-dependent mechanism involving adhesion molecules. MBio 8, e00741-17.10.1128/mBio.00741-17Search in Google Scholar PubMed PubMed Central

Costa, V.V, Del Sarto, J.L., Rocha, R.F., Silva, F.R., Doria, J.G., Olmo, I.G., Marques, R.E., Queiroz-Junior, C.M., Foureaux, G., Araújo, J.M.S., et al. (2017b) N-methyl-D-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 8, e00350-17.10.1128/mBio.00350-17Search in Google Scholar PubMed PubMed Central

Coyne, C.B. and Lazear, H.M. (2016). Zika virus – reigniting the TORCH. Nat. Rev. Microbiol. 14, 707–715.10.1038/nrmicro.2016.125Search in Google Scholar PubMed

Crotty, S., Cameron, C.E., and Andino, R. (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA 98, 6895–6900.10.1073/pnas.111085598Search in Google Scholar PubMed PubMed Central

Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Sakuntabhai, A., Cao-Lormeau, V.-M., Malasit, P., Rey, F.A., et al. (2016). Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1108.10.1038/ni.3515Search in Google Scholar PubMed PubMed Central

de Lamballerie, X. (2015). CuraChik: A Trial of the Efficacy and Safety of Chloroquine as Therapeutic Treatment of Chikungunya Disease. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00391313&cond=Chikungunya&draw=1&rank=1 (Accessed June 28, 2017).Search in Google Scholar

Dowall, S.D., Graham, V.A., Rayner, E., Atkinson, B., Hall, G., Watson, R.J., Bosworth, A., Bonney, L.C., Kitchen, S., Hewson, R., et al. (2016). A susceptible mouse model for Zika virus infection. PLoS Negl. Trop. Dis. 10, e0004658.10.1371/journal.pntd.0004658Search in Google Scholar PubMed PubMed Central

Duijster, J.W., Goorhuis, A., van Genderen, P.J.J., Visser, L.G., Koopmans, M.P., Reimerink, J.H., Grobusch, M.P., van der Eijk, A.A., van den Kerkhof, J.H.C.T., Reusken, C.B., et al. (2016). Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection 44, 797–802.10.1007/s15010-016-0906-ySearch in Google Scholar PubMed PubMed Central

Fagundes, C.T., Costa, V.V., Cisalpino, D., Amaral, F.A., Souza, P.R.S., Souza, R.S., Ryffel, B., Vieira, L.Q., Silva, T.A., Atrasheuskaya, A., et al. (2011). IFN-γ production depends on IL-12 and IL-18 combined action and mediates host resistance to Dengue virus infection in a nitric oxide-dependent manner. PLoS Negl. Trop. Dis. 5, e1449.10.1371/journal.pntd.0001449Search in Google Scholar PubMed PubMed Central

Flipse, J., Diosa-Toro, M.A., Hoornweg, T.E., van de Pol, D.P.I., Urcuqui-Inchima, S., and Smit, J.M. (2016). Antibody-dependent enhancement of Dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci. Rep. 6, 29201.10.1038/srep29201Search in Google Scholar PubMed PubMed Central

Förger, F. and Villiger, P.M. (2016). Treatment of rheumatoid arthritis during pregnancy: present and future. Expert Rev. Clin. Immunol. 12, 937–944.10.1080/1744666X.2016.1184973Search in Google Scholar PubMed

Foy, B.D., Kobylinski, K.C., Foy, J.L.C., Blitvich, B.J., Travassos da Rosa, A., Haddow, A.D., Lanciotti, R.S., and Tesh, R.B. (2011). Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 17, 880–882.10.3201/eid1705.101939Search in Google Scholar PubMed PubMed Central

Freedman, A. and Steinberg, V.L. (1960). Chloroquine in rheumatoid arthritis; a double blindfold trial of treatment for one year. Ann. Rheum. Dis. 19, 243–50.10.1136/ard.19.3.243Search in Google Scholar PubMed PubMed Central

Gack, M.U. and Diamond, M.S. (2016). Innate immune escape by Dengue and West Nile viruses. Curr. Opin. Virol. 20, 119–128.10.1016/j.coviro.2016.09.013Search in Google Scholar PubMed PubMed Central

Gallegos, K.M., Drusano, G.L., D’argenio, D.Z., and Brown, A.N. (2016). Chikungunya virus: in vitro response to combination therapy with ribavirin and interferon α2a. J. Infect. Dis. 214, 1192–1197.10.1093/infdis/jiw358Search in Google Scholar PubMed PubMed Central

Galliez, R.M., Spitz, M., Rafful, P.P., Cagy, M., Escosteguy, C., Spósito, C., Germano, B., Sasse, E., Gonçalves, A.L., Silveira, P.P. et al. (2016). Zika virus causing encephalomyelitis associated with immunoactivation. Open Forum Infect. Dis. 3, 1–4.10.1093/ofid/ofw203Search in Google Scholar

Gasque, P., Couderc, T., Lecuit, M., Roques, P., and Ng, L.F.P. (2015). Chikungunya virus pathogenesis and immunity. Vector-Borne Zoonotic Dis. 15, 241–249.10.1089/vbz.2014.1710Search in Google Scholar

Goodfellow, J.A. and Willison, H.J. (2016). Guillain–Barré syndrome: a century of progress. Nat. Rev. Neurol. 12, 723–731.10.1038/nrneurol.2016.172Search in Google Scholar

Götestam Skorpen, C., Hoeltzenbein, M., Tincani, A., Fischer-Betz, R., Elefant, E., Chambers, C., da Silva, J., Nelson-Piercy, C., Cetin, I., Costedoat-Chalumeau, N., et al. (2016). The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 75, 795–810.10.1136/annrheumdis-2015-208840Search in Google Scholar

Grant, A., Ponia, S.S., Tripathi, S., Balasubramaniam, V., Miorin, L., Sourisseau, M., Schwarz, M.C., Sánchez-Seco, M.P., Evans, M.J., Best, S.M., et al. (2016). Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890.10.1016/j.chom.2016.05.009Search in Google Scholar

Guabiraba, R., Marques, R.E., Besnard, A.-G., Fagundes, C.T., Souza, D.G., Ryffel, B., and Teixeira, M.M. (2010). Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental Dengue infection in mice. PLoS One 5, e15680.10.1371/journal.pone.0015680Search in Google Scholar

Guabiraba, R., Besnard, A.-G., Marques, R.E., Maillet, I., Fagundes, C.T., Conceição, T.M., Rust, N.M., Charreau, S., Paris, I., Lecron, J.-C., et al. (2013). IL-22 modulates IL-17A production and controls inflammation and tissue damage in experimental dengue infection. Eur. J. Immunol. 43, 1529–1544.10.1002/eji.201243229Search in Google Scholar

Gubler, D.J. (2002). The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33, 330–342.10.1016/S0188-4409(02)00378-8Search in Google Scholar

Hadinegoro, S.R., Arredondo-García, J.L., Capeding, M.R., Deseda, C., Chotpitayasunondh, T., Dietze, R., Hj Muhammad Ismail, H.I., Reynales, H., Limkittikul, K., Rivera-Medina, D.M., et al. (2015). Efficacy and long-term safety of a Dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206.10.1056/NEJMoa1506223Search in Google Scholar PubMed

Halstead, S.B. (2017). Which Dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? There is only one true winner. Cold Spring Harb. Perspect. Biol. [Epub ahead of print]. Doi: 10.1101/cshperspect.a030700.10.1101/cshperspect.a030700Search in Google Scholar PubMed PubMed Central

Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., Neyret, A., Luplertlop, N., Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., et al. (2015). Biology of Zika virus infection in human skin cells. J. Virol. 89, 8880–8896.10.1128/JVI.00354-15Search in Google Scholar PubMed PubMed Central

Harinasuta, C., Nimmanitya, S., and Titsyakorn, U. (1985). The effect of interferon-αA on two cases of Japanese encephalitis in Thailand. Southeast Asian J. Trop. Med. Public Health. 16, 332–6.Search in Google Scholar

Hawman, D.W., Stoermer, K.A., Montgomery, S.A., Pal, P., Oko, L., Diamond, M.S., and Morrison, T.E. (2013). Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 87, 13878–13888.10.1128/JVI.02666-13Search in Google Scholar PubMed PubMed Central

Her, Z., Malleret, B., Chan, M., Ong, E.K.S., Wong, S.C., Kwek, D.J.C., Tolou, H., Lin, R.T.P., Tambyah, P.A., Renia, L., et al. (2010). Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J. Immunol. 184, 5903–5913.10.4049/jimmunol.0904181Search in Google Scholar PubMed

Hoarau, J.J., Jaffar Bandjee, M.C., Krejbich Trotot, P., Das, T., Li-Pat-Yuen, G., Dassa, B., Denizot, M., Guichard, E., Ribera, A., Henni, T., et al. (2010). Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927.10.4049/jimmunol.0900255Search in Google Scholar PubMed

Hottz, E.D., Lopes, J.F., Freitas, C., Valls-de-Souza, R., Oliveira, M.F., Bozza, M.T., Da Poian, A.T., Weyrich, A.S., Zimmerman, G.A., Bozza, F.A., et al. (2013). Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122, 3405–3414.10.1182/blood-2013-05-504449Search in Google Scholar PubMed PubMed Central

Hughes, B.W., Addanki, K.C., Sriskanda, A.N., McLean, E., and Bagasra, O. (2016). Infectivity of immature neurons to Zika virus: a link to congenital Zika syndrome. EBioMedicine 10, 65–70.10.1016/j.ebiom.2016.06.026Search in Google Scholar PubMed PubMed Central

Javelle, E., Ribera, A., Degasne, I., Gaüzère, B.A., Marimoutou, C., and Simon, F. (2015). Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006–2012. PLoS Negl. Trop. Dis. 9, 1–18.10.1371/journal.pntd.0003603Search in Google Scholar PubMed PubMed Central

Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990–993.10.1038/nature06536Search in Google Scholar PubMed PubMed Central

Journel, I., Andrécy, L.L., Metellus, D., Pierre, J.S., Faublas, R.M., Juin, S., Dismer, A.M., Fitter, D.L., Neptune, D., Laraque, M.J., et al. (2017). Transmission of Zika virus – Haiti, October 12, 2015–September 10, 2016. MMWR. Morb. Mortal. Wkly. Rep. 66, 172–176.10.15585/mmwr.mm6606a4Search in Google Scholar PubMed PubMed Central

Kelvin, A.A., Banner, D., Silvi, G., Moro, M.L., Spataro, N., Gaibani, P., Cavrini, F., Pierro, A., Rossini, G., Cameron, M.J., et al. (2011). Inflammatory cytokine expression is associated with Chikungunya virus resolution and symptom severity. PLoS Negl. Trop. Dis. 5, e1279.10.1371/journal.pntd.0001279Search in Google Scholar PubMed PubMed Central

Kim, J.H., Patil, A.M., Choi, J.Y., Kim, S.B., Uyangaa, E., Hossain, F.M.A., Park, S.-Y., Lee, J.H., and Eo, S.K. (2016). CCR5 ameliorates Japanese encephalitis via dictating the equilibrium of regulatory CD4+Foxp3+ T and IL-17+CD4+ Th17 cells. J. Neuroinflammation 13, 223.10.1186/s12974-016-0656-xSearch in Google Scholar

Khan, M., Santhosh, S.R., Tiwari, M., Lakshmana Rao, P.V., and Parida, M. (2010). Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J. Med. Virol. 82, 817–824.10.1002/jmv.21663Search in Google Scholar

Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., et al. (2002). Structure of Dengue virus. Cell 108, 717–725.10.1016/S0092-8674(02)00660-8Search in Google Scholar

Kuno, G. and Chang, G.-J.J. (2005). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 18, 608–637.10.1128/CMR.18.4.608-637.2005Search in Google Scholar PubMed PubMed Central

Labadie, K. (2010). Chikungunya disease in nonhuman primates leads to long-term viral persistence in macrophages. J Clin Invest. 120, 1–13.10.1172/JCI40104Search in Google Scholar PubMed PubMed Central

Lamballerie, X.D., Boisson, V., Reynier, J.-C., Enault, S., Charrel, R.N., Flahault, A., Roques, P., and Le Grand, R. (2008). On chikungunya acute infection and chloroquine treatment. Vector-Borne Zoonotic Dis. 8, 837–840.10.1089/vbz.2008.0049Search in Google Scholar PubMed

Lazear, H.M. and Diamond, M.S. (2016). Zika virus: new clinical syndromes and its emergence in the Western hemisphere. J. Virol. 90, 4864–4875.10.1128/JVI.00252-16Search in Google Scholar PubMed PubMed Central

Lazear, H.M., Govero, J., Smith, A.M., Platt, D.J., Fernandez, E., Miner, J.J., and Diamond, M.S. (2016). A mouse model of Zika virus pathogenesis. Cell Host Microbe 19, 720–730.10.1016/j.chom.2016.03.010Search in Google Scholar PubMed PubMed Central

Leviton, A., Kuban, K.C.K., Allred, E.N., Fichorova, R.N., O’Shea, T.M., Paneth, N., and ELGAN Study Investigators (2011). Early postnatal blood concentrations of inflammation-related proteins and microcephaly two years later in infants born before the 28th post-menstrual week. Early Hum. Dev. 87, 325–330.10.1016/j.earlhumdev.2011.01.043Search in Google Scholar PubMed

Liu, S., DeLalio, L.J., Isakson, B.E., and Wang, T.T. (2016a). AXL-mediated productive infection of human endothelial cells by Zika virus. Circ. Res. 119, 1183–1189.10.1161/CIRCRESAHA.116.309866Search in Google Scholar PubMed PubMed Central

Liu, Y., Liu, J., and Cheng, G. (2016b). Vaccines and immunization strategies for dengue prevention. Emerg. Microbes Infect. 5, e77.10.1038/emi.2016.74Search in Google Scholar

Low, J.G., Sung, C., Wijaya, L., Wei, Y., Rathore, A.P.S., Watanabe, S., Tan, B.H., Toh, L., Chua, L.T., Hou, Y., et al. (2014). Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis. 14, 706–715.10.1016/S1473-3099(14)70730-3Search in Google Scholar

Mahalingam, S., Teixeira, M.M., and Halstead, S.B. (2017). Zika enhancement: a reality check. Lancet Infect. Dis. 17, 686–688.10.1016/S1473-3099(17)30340-7Search in Google Scholar

Marques, R.E., Guabiraba, R., Russo, R.C., and Teixeira, M.M. (2013). Targeting CCL5 in inflammation. Expert Opin. Ther. Targets. 17, 1439–1460.10.1517/14728222.2013.837886Search in Google Scholar PubMed PubMed Central

Marques, R.E., Guabiraba, R., Cisalpino, D., Teixeira, M.M., and Souza, D.G. (2014). Dengue. Colloq. Ser. Integr. Syst. Physiol. From Mol. Funct. 6, 1–104.10.4199/C00103ED1V01Y201402ISP049Search in Google Scholar

Marques, R.E., Guabiraba, R., Del Sarto, J.L., Rocha, R.F., Queiroz, A.L., Cisalpino, D., Marques, P.E., Pacca, C.C., Fagundes, C.T., Menezes, G.B., et al. (2015). Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 145, 583–596.10.1111/imm.12476Search in Google Scholar PubMed PubMed Central

Martinez, F.O. and Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13.10.12703/P6-13Search in Google Scholar PubMed PubMed Central

Massad, E., Tan, S.-H., Khan, K., and Wilder-Smith, A. (2016). Estimated Zika virus importations to Europe by travellers from Brazil. Glob. Health Action 9, 31669.10.3402/gha.v9.31669Search in Google Scholar PubMed PubMed Central

McCarthy, M. (2016). First US case of Zika virus infection is identified in Texas. Br. Med J. 352, i212.10.1136/bmj.i212Search in Google Scholar PubMed

McGrath, E.L., Rossi, S.L., Gao, J., Widen, S.G., Grant, A.C., Dunn, T.J., Azar, S.R., Roundy, C.M., Xiong, Y., Prusak, D.J., et al. (2017). Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep. 8, 715–727.10.1016/j.stemcr.2017.01.008Search in Google Scholar PubMed PubMed Central

Md Yusof, M.Y. and Emery, P. (2013). Targeting interleukin-6 in rheumatoid arthritis. Drugs 73, 341–356.10.1007/s40265-013-0018-2Search in Google Scholar

Meertens, L., Carnec, X., Lecoin, M.P., Ramdasi, R., Guivel-Benhassine, F., Lew, E., Lemke, G., Schwartz, O., and Amara, A. (2012). The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557.10.1016/j.chom.2012.08.009Search in Google Scholar

Miller, J.L., deWet, B.J.M., Martinez-Pomares, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M., and Gordon, S. (2008). The mannose receptor mediates Dengue Virus infection of macrophages. PLoS Pathog. 4, e17.10.1371/journal.ppat.0040017Search in Google Scholar

Modi, W.S., Dean, M., Seuanez, H.N., Mukaida, N., Matsushima, K., and O’Brien, S.J. (1990). Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84, 185–7.10.1007/BF00208938Search in Google Scholar

Mosa, C., Trizzino, A., Trizzino, A., Di Marco, F., D’Angelo, P., and Farruggia, P. (2014). Treatment of human papillomavirus infection with interferon α and ribavirin in a patient with acquired aplastic anemia. Int. J. Infect. Dis. 23, 25–27.10.1016/j.ijid.2013.11.021Search in Google Scholar

Musso, D., Nhan, T., Robin, E., Roche, C., Bierlaire, D., Zisou, K., Shan Yan, A., Cao-Lormeau, V.M., and Broult, J. (2014). Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill. 19, 201761.10.2807/1560-7917.ES2014.19.14.20761Search in Google Scholar

Nahmias, A.J., Josey, W.E., Naib, Z.M., Freeman, M.G., Fernandez, R.J., and Wheeler, J.H. (1971). Perinatal risk associated with maternal genital herpes simplex virus infection. Am. J. Obstet. Gynecol. 110, 825–37.10.1016/0002-9378(71)90580-1Search in Google Scholar

Ng, L.F.P., Chow, A., Sun, Y.J., Kwek, D.J.C., Lim, P.L., Dimatatac, F., Ng, L.C., Ooi, E.E., Chao, K.H., Her, Z., et al. (2009). IL-1B, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One 4, 1–8.10.1371/journal.pone.0004261Search in Google Scholar PubMed PubMed Central

Nguyen, T.H.T., Nguyen, T.H.Q., Vu, T.T., Farrar, J., Hoang, T.L., Dong, T.H.T., Ngoc Tran, V., Phung, K.L., Wolbers, M., Whitehead, S.S., et al. (2013). Corticosteroids for Dengue – why don’t they work? PLoS Negl. Trop. Dis. 7, e2592.10.1371/journal.pntd.0002592Search in Google Scholar PubMed PubMed Central

Olmo, I.G., Carvalho, T.G., Costa, V.V., Alves-Silva, J., Ferrari, C.Z., Izidoro-Toledo, T.C., da Silva, J.F., Teixeira, A.L., Souza, D.G., Marques, J.T., et al. (2017). Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol. 8, 1016.10.3389/fimmu.2017.01016Search in Google Scholar PubMed PubMed Central

Ornelas, A.M.M., Pezzuto, P., Silveira, P.P., Melo, F.O., Ferreira, T.A., Oliveira-Szejnfeld, P.S., Leal, J.I., Amorim, M.M.R., Hamilton, S., Rawlinson, W.D., et al. (2017). Immune activation in amniotic fluid from Zika virus-associated microcephaly. Ann. Neurol. 81, 152–156.10.1002/ana.24839Search in Google Scholar PubMed

Pang, T., Cardosa, M.J., Guzman, M.G., Azeredo, E.L., Nogueira, R.M., Assis, E.F., Bozza, P.T., Kubelka, C.F., Chen, S., and Liu, H. (2007). Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell Biol. 85, 43–45.10.1038/sj.icb.7100008Search in Google Scholar PubMed

Pantoja, P., Pérez-Guzmán, E.X., Rodríguez, I.V., White, L.J., González, O., Serrano, C., Giavedoni, L., Hodara, V., Cruz, L., Arana, T., et al. (2017). Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat. Commun. 8, 15674.10.1038/ncomms15674Search in Google Scholar PubMed PubMed Central

Peng, M., Watanabe, S., Chan, K.W.K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S.G., and Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 143, 176–185.10.1016/j.antiviral.2017.03.026Search in Google Scholar PubMed

Plummer, E., Buck, M.D., Sanchez, M., Greenbaum, J.A., Turner, J., Grewal, R., Klose, B., Sampath, A., Warfield, K.L., Peters, B., et al. (2015). Dengue virus evolution under a host-targeted antiviral. J. Virol. 89, 5592–5601.10.1128/JVI.00028-15Search in Google Scholar PubMed PubMed Central

Pomar, L., Malinger, G., Benoist, G., Carles, G., Ville, Y., Rousset, D., Hcini, N., Pomar, C., Jolivet, A., and Lambert, V. (2017). Association between Zika virus and fetopathy: a prospective cohort study in French Guiana. Preliminary report. Ultrasound Obstet. Gynecol. 49, 729–736.10.1002/uog.17404Search in Google Scholar PubMed

Powell, J.R., Tabachnick, W.J., Powell, J.R., and Tabachnick, W.J. (2013). History of domestication and spread of Aedes aegypti – a review. Mem. Inst. Oswaldo Cruz 108, 11–17.10.1590/0074-0276130395Search in Google Scholar PubMed PubMed Central

Rasmussen, S.A., Jamieson, D.J., Honein, M.A., and Petersen, L.R. (2016). Zika virus and birth defects – reviewing the evidence for causality. N. Engl. J. Med. 374, 1981–1987.10.1056/NEJMsr1604338Search in Google Scholar PubMed

Ravichandran, R. and Manian, M. (2008). Ribavirin therapy for Chikungunya arthritis. J. Infect. Dev. Ctries. 2, 140–142.10.3855/T2.2.140Search in Google Scholar

Ren, K. and Torres, R. (2009). Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 60, 57–64.10.1016/j.brainresrev.2008.12.020Search in Google Scholar PubMed PubMed Central

Renneson, J., Guabiraba, R., Maillet, I., Marques, R.E., Ivanov, S., Fontaine, J., Paget, C., Quesniaux, V., Faveeuw, C., Ryffel, B., et al. (2011). A detrimental role for invariant natural killer T cells in the pathogenesis of experimental Dengue virus infection. Am. J. Pathol. 179, 1872–1883.10.1016/j.ajpath.2011.06.023Search in Google Scholar

Rodrigo Pegado Freitas. (2017). tDCS and Its therapeutic effects in CK fever. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02993952&cond=Chikungunya&draw=1&rank=13 (Accessed June 28, 2017).Search in Google Scholar

Rong, L. and Perelson, A.S. (2010). Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Crit. Rev. Immunol. 30, 131–148.10.1615/CritRevImmunol.v30.i2.30Search in Google Scholar

Rothman, A.L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532–543.10.1038/nri3014Search in Google Scholar

Ruiz Silva, M., van der Ende-Metselaar, H., Mulder, H.L., Smit, J.M., and Rodenhuis-Zybert, I.A. (2016). Mechanism and role of MCP-1 upregulation upon Chikungunya virus infection in human peripheral blood mononuclear cells. Sci. Rep. 6, 32288.10.1038/srep32288Search in Google Scholar

Rulli, N.E., Rolph, M.S., Srikiatkhachorn, A., Anantapreecha, S., Guglielmotti, A., and Mahalingam, S. (2011). Protection from arthritis and myositis in a mouse model of acute Chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis. 204, 1026–1030.10.1093/infdis/jir470Search in Google Scholar

Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545.10.1146/annurev-immunol-032713-120231Search in Google Scholar

Schul, W., Liu, W., Xu, H., Flamand, M., and Vasudevan, S.G. (2007). A Dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J. Infect. Dis. 195, 665–674.10.1086/511310Search in Google Scholar

Schwarz, T.F. (2016). Is discussion of dengue vaccination for the 2016 Olympics necessary? Lancet 388, 1881.10.1016/S0140-6736(16)31807-4Search in Google Scholar

Sharma, S.K. (2017). Efficacy of Starting Methotrexate Early in Chikungunya Arthritis. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03058471&cond=Chikungunya&draw=1&rank=10 (Accessed June 28, 2017).Search in Google Scholar

Simin, C.A.D. (2008). Treating inflammation by blocking interleukin-1 in a broad spectrum of disease. Growth (Lakeland) 23, 1–7.Search in Google Scholar

Simoni, M.K., Jurado, K.A., Abrahams, V.M., Fikrig, E., and Guller, S. (2017). Zika virus infection of Hofbauer cells. Am. J. Reprod. Immunol. 77, e12613.10.1111/aji.12613Search in Google Scholar PubMed PubMed Central

Smith, S.E.P., Li, J., Garbett, K., Mirnics, K., and Patterson, P.H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702.10.1523/JNEUROSCI.2178-07.2007Search in Google Scholar PubMed PubMed Central

Souza, D.G., Fagundes, C.T., Sousa, L.P., Amaral, F.A., Souza, R.S., Souza, A.L., Kroon, E.G., Sachs, D., Cunha, F.Q., Bukin, E., et al. (2009). Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc. Natl. Acad. Sci. USA 106, 14138–14143.10.1073/pnas.0906467106Search in Google Scholar PubMed PubMed Central

Srirangan, S. and Choy, E.H. (2010). The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2, 247–256.10.1177/1759720X10378372Search in Google Scholar PubMed PubMed Central

Stephen, E.L., Sammons, M.L., Pannier, W.L., Baron, S., Spertzel, R.O., and Levy, H.B. (1977). Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta). J. Infect. Dis. 136, 122–126.10.1093/infdis/136.1.122Search in Google Scholar PubMed

Tam, D.T.H., Ngoc, T.V., Tien, N.T.H., Kieu, N.T.T., Thuy, T.T.T., Thanh, L.T.C., Tam, C.T., Truong, N.T., Dung, N.T., Qui, P.T., et al. (2012). Effects of short-course oral corticosteroid therapy in early Dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin. Infect. Dis. 55, 1216–1224.10.1093/cid/cis655Search in Google Scholar PubMed PubMed Central

Tappe, D., Nachtigall, S., Kapaun, A., Schnitzler, P., Günther, S., and Schmidt-Chanasit, J. (2015). Acute Zika virus infection after travel to Malaysian Borneo, September 2014. Emerg. Infect. Dis. 21, 911–913.10.3201/eid2105.141960Search in Google Scholar PubMed PubMed Central

Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M.A., Pattanapanyasat, K., Sarasombath, S., Birx, D.L., et al. (2003). DC-SIGN (CD209) mediates Dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829.10.1084/jem.20021840Search in Google Scholar PubMed PubMed Central

Teng, T.S., Kam, Y.W., Lee, B., Hapuarachchi, H.C., Wimal, A., Ng, L.C., and Ng, L.F.P. (2015). A systematic meta-analysis of immune signatures in patients with acute Chikungunya virus infection. J. Infect. Dis. 211, 1925–1935.10.1093/infdis/jiv049Search in Google Scholar PubMed PubMed Central

Terzian, A.C.B., Schanoski, A.S., Mota, M.T. de O., da Silva, R.A., Estofolete, C.F., Colombo, T.E., Rahal, P., Hanley, K.A., Vasilakis, N., Kalil, J., et al. (2017). Viral load and cytokine response profile does not support antibody-dependent enhancement in Dengue-primed Zika virus–infected patients. Clin. Infect. Dis. 48, 324–331.10.1093/cid/cix558Search in Google Scholar PubMed PubMed Central

Trugilho, M.R. de O., Hottz, E.D., Brunoro, G.V.F., Teixeira-Ferreira, A., Carvalho, P.C., Salazar, G.A., Zimmerman, G.A., Bozza, F.A., Bozza, P.T., and Perales, J. (2017). Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLOS Pathog. 13, e1006385.10.1371/journal.ppat.1006385Search in Google Scholar PubMed PubMed Central

Valadão, A.L.C., Aguiar, R.S., and de Arruda, L.B. (2016). Interplay between inflammation and cellular stress triggered by Flaviviridae viruses. Front. Microbiol. 7, 1233.10.3389/fmicb.2016.01233Search in Google Scholar PubMed PubMed Central

Wauquier, N., Becquart, P., Nkoghe, D., Padilla, C., Ndjoyi-Mbiguino, A., and Leroy, E.M. (2011). The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J. Infect. Dis. 204, 115–123.10.1093/infdis/jiq006Search in Google Scholar PubMed PubMed Central

Wen, Z., Nguyen, H.N., Guo, Z., Lalli, M.A., Wang, X., Su, Y., Kim, N.S., Yoon, K.J., Shin, J., Zhang, C., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418.10.1038/nature13716Search in Google Scholar PubMed PubMed Central

WHO | Questions and Answers on Dengue Vaccines. (2016). WHO. [online] http://www.who.int/immunization/research/development/dengue_q_and_a/en/ (Accessed August 29, 2017).Search in Google Scholar

Winter, P.M., Dung, N.M., Loan, H.T., Kneen, R., Wills, B., Thu, L.T., House, D., White, N.J., Farrar, J.J., Hart, C.A., et al. (2004). Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J. Infect. Dis. 190, 1618–1626.10.1086/423328Search in Google Scholar PubMed

Woolf, N.K., Jaquish, D.V, and Koehrn, F.J. (2007). Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol. J. 4, 26.10.1186/1743-422X-4-26Search in Google Scholar PubMed PubMed Central

Worm, M., Schadendorf, D., and Czarnetzki, B.M. (1993). Responsiveness to interferon treatment of human melanoma cells correlates to immunophenotype. Melanoma Res. 3, 29–33.10.1097/00008390-199304000-00005Search in Google Scholar PubMed

Zambrano, H., Waggoner, J.J., Almeida, C., Rivera, L., Benjamin, J.Q., and Pinsky, B.A. (2016). Zika virus and Chikungunya virus coinfections: a series of three cases from a single center in Ecuador. Am. J. Trop. Med. Hyg. 95, 894–896.10.4269/ajtmh.16-0323Search in Google Scholar PubMed PubMed Central

Zlokovic, B.V, Cho, T., Choi, H.B., Jantaratnotai, N., McLarnon, J.G., and Mitteregger, G. (2010). Neurodegeneration and the neurovascular unit. Nat. Med. 16, 1370–1371.10.1038/nm1210-1370Search in Google Scholar PubMed

Zompi, S. and Harris, E. (2012). Animal models of Dengue virus infection. Viruses 4, 62–82.10.3390/v4010062Search in Google Scholar PubMed PubMed Central

Zuiki, M., Chiyonobu, T., Yoshida, M., Maeda, H., Yamashita, S., Kidowaki, S., Hasegawa, T., Gotoh, H., Nomura, T., Ono, K., et al. (2017). Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: a candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci. Lett. 653, 296–301.10.1016/j.neulet.2017.06.004Search in Google Scholar PubMed

Received: 2017-9-5
Accepted: 2017-10-16
Published Online: 2017-11-16
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0236/html
Scroll to top button