Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 399, Issue 5


Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry

Joseph GeorgeORCID iD: http://orcid.org/0000-0001-5354-7884
Published Online: 2018-02-06 | DOI: https://doi.org/10.1515/hsz-2017-0260


Serum and liver selenium levels were studied during the pathogenesis of N-nitrosodimethylamine (NDMA) induced hepatic fibrosis in rats. The degree of fibrosis was assessed with Masson’s trichrome staining and quantifying collagen content in the liver. Lipid peroxides were measured in blood and liver samples and total glutathione and glutathione peroxidase were assayed in the liver tissue to evaluate oxidative stress. Interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1) were measured in the serum. Selenium levels were determined using inductively coupled plasma-mass spectrometry (ICP-MS) after acid digestion and hydride generation of selenium. Serial administrations of NDMA produced well-developed fibrosis and early cirrhosis in the liver with 4-fold increase of total collagen content and deposition of collagen fibers. Blood and hepatic lipid peroxides, serum IL-6 and TGF-β1 were significantly increased. There was significant reduction in hepatic glutathione and glutathione peroxidase levels. Serum and liver selenium were remarkably decreased on all the days studied. The results suggest that decreased selenium and glutathione peroxidase contribute to the impairment of cellular antioxidant defense, which in turn results in oxidative stress and trigger pathogenesis of hepatic fibrosis. The study further demonstrated that ICP-MS with hydride generation technique is a reliable and sensitive method for determination of selenium in biological samples.

Keywords: dimethylnitrosamine; glutathione peroxidase; hepatic fibrosis; ICP-MS; N-nitrosodimethylamine; selenium


  • Alegre, F., Pelegrin, P., and Feldstein, A.E. (2017). Inflammasomes in liver fibrosis. Semin. Liver Dis. 37, 119–127.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Boosalis, M.G. (2008). The role of selenium in chronic disease. Nutr. Clin. Pract. 23, 152–160.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Brenneisen, P., Steinbrenner, H., and Sies, H. (2005). Selenium, oxidative stress, and health aspects. Mol. Asp. Med. 26, 256–267.CrossrefGoogle Scholar

  • Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.PubMedCrossrefGoogle Scholar

  • Buckley, W.T., Budac, J.J., Godfrey, D.V., and Koenig, K.M. (1992). Determination of selenium by inductively coupled plasma mass spectrometry utilizing a new hydride generation sample introduction system. Anal. Chem. 64, 724–729.PubMedCrossrefGoogle Scholar

  • Burk, R.F., Early, D.S., Hill, K.E., Palmer, I.S., and Boeglin, M.E. (1998). Plasma selenium in patients with cirrhosis. Hepatology 27, 794–798.PubMedCrossrefGoogle Scholar

  • Casaril, M., Stanzial, A.M., Gabrielli, G.B., Capra, F., Zenari, L., Galassini, S., Moschini, G., Liu, N.Q., and Corrocher, R. (1989). Serum selenium in liver cirrhosis: correlation with markers of fibrosis. Clin. Chim. Acta 182, 221–227.CrossrefPubMedGoogle Scholar

  • Dworkin, B.M., Rosenthal, W.S., Stahl, R.E., and Panesar, N.K. (1988). Decreased hepatic selenium content in alcoholic cirrhosis. Dig. Dis. Sci. 33, 1213–1217.CrossrefPubMedGoogle Scholar

  • George, J. (2003). Ascorbic acid concentrations in dimethylnitrosamine-induced hepatic fibrosis in rats. Clin. Chim. Acta 335, 39–47.PubMedCrossrefGoogle Scholar

  • George, J. (2008). Elevated serum beta-glucuronidase reflects hepatic lysosomal fragility following toxic liver injury in rats. Biochem. Cell Biol. 86, 235–243.PubMedWeb of ScienceCrossrefGoogle Scholar

  • George, J. and Chandrakasan, G. (1996). Molecular characteristics of dimethylnitrosamine induced fibrotic liver collagen. Biochim. Biophys. Acta 1292, 215–222.PubMedCrossrefGoogle Scholar

  • George, J., Rao, K.R., Stern, R., and Chandrakasan, G. (2001). Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology 156, 129–138.PubMedCrossrefGoogle Scholar

  • George, J., Tsutsumi, M., and Tsuchishima, M. (2017). MMP-13 deletion decreases profibrogenic molecules and attenuates N-nitrosodimethylamine induced liver injury and fibrosis in mice. J. Cell. Mol. Med. 21, 3821–3835.CrossrefWeb of SciencePubMedGoogle Scholar

  • Gheita, T.A. and Kenawy, S.A. (2014). Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol. Biol. 1134, 193–199.PubMedWeb of ScienceCrossrefGoogle Scholar

  • González-Reimers, E., Galindo-Martín, L., Santolaria-Fernández, F., Sánchez-Pérez, M.J., Alvisa-Negrín, J., García-Valdecasas-Campelo, E., González-Pérez, J.M., and Martín-González, M.C. (2008). Prognostic value of serum selenium levels in alcoholics. Biol. Trace Elem. Res. 125, 22–29.Web of ScienceCrossrefPubMedGoogle Scholar

  • Gutiérrez, R., Alvarado, J.L., Presno, M., Pérez-Veyna, O., Serrano, C.J., and Yahuaca, P. (2010). Oxidative stress modulation by Rosmarinus officinalis in CCl4-induced liver cirrhosis. Phytother. Res. 24, 595–601.Web of SciencePubMedCrossrefGoogle Scholar

  • Jamall, I.S., Finelli, V.N., and Que Hee, S.S. (1981). A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal. Biochem. 112, 70–75.PubMedCrossrefGoogle Scholar

  • Khan, N., Jeong, I.S., Hwang, I.M., Kim, J.S., Choi, S.H., Nho, E.Y., Choi, J.Y., Park, K.S., and Kim, K.S. (2014). Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem. 147, 220–224.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Korpela, H., Kumpulainen, J., Luoma, P.V., Arranto, A.J., and Sotaniemi, E.A. (1985). Decreased serum selenium in alcoholics as related to liver structure and function. Am. J. Clin. Nutr. 42, 147–151.PubMedCrossrefGoogle Scholar

  • Laclaustra, M., Navas-Acien, A., Stranges, S., Ordovas, J.M., and Guallar, E. (2009). Serum selenium concentrations and hypertension in the US Population. Circ. Cardiovasc. Qual. Outcomes 2, 369–376.Web of SciencePubMedCrossrefGoogle Scholar

  • Lin, X., Chen, Y., Lv, S., Tan, S., Zhang, S., Huang, R., Zhuo, L., Liang, S., Lu, Z., and Huang, Q. (2015). Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. Int. Immunopharmacol. 28, 305–312.CrossrefWeb of SciencePubMedGoogle Scholar

  • Liu, R.M. and Gaston Pravia, K.A. (2010). Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic. Biol. Med. 48, 1–15.Web of ScienceCrossrefPubMedGoogle Scholar

  • Lu, C.W., Chang, H.H., Yang, K.C., Kuo, C.S., Lee, L.T., and Huang, K.C. (2016). High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. BMJ Open Diabetes Res. Care 4, e000253.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Lubos, E., Loscalzo, J., and Handy, D.E. (2011). Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 15, 1957–1997.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Massadeh, A., Gharibeh, A., Omari, K., Al-Momani, I., Alomary, A., Tumah, H., and Hayajneh, W. (2010). Simultaneous determination of Cd, Pb, Cu, Zn, and Se in human blood of jordanian smokers by ICP-OES. Biol. Trace Elem. Res. 133, 1–11.Web of ScienceCrossrefGoogle Scholar

  • Mormone, E., George, J., and Nieto, N. (2011). Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact. 193, 225–231.Web of SciencePubMedCrossrefGoogle Scholar

  • Nakahara, T. (1983). Applications of hydride generation techniques in atomic absorption, atomic fluorescence and plasma atomic emission spectroscopy. Prog. Anal. At. Spectrosc. 6, 163–223.Google Scholar

  • Ojeda, M.L., Carreras, O., Sobrino, P., Murillo, M.L., and Nogales, F. (2017). Biological implications of selenium in adolescent rats exposed to binge drinking: oxidative, immunologic and apoptotic balance. Toxicol. Appl. Pharmacol. 329, 165–172.Web of ScienceCrossrefPubMedGoogle Scholar

  • Pemberton, P.W., Smith, A., and Warnes, T.W. (2005). Non-invasive monitoring of oxidant stress in alcoholic liver disease. Scand. J. Gastroenterol. 40, 1102–1108.CrossrefPubMedGoogle Scholar

  • Petrovski, B.E., Pataki, V., Jenei, T., Adány, R., and Vokó, Z. (2012). Selenium levels in men with liver disease in Hungary. J. Trace Elem. Med. Biol. 26, 31–35.Web of SciencePubMedCrossrefGoogle Scholar

  • Prystupa, A., Kiciński, P., Luchowska-Kocot, D., Błażewicz, A., Niedziałek, J., Mizerski, G., Jojczuk, M., Ochal, A., Sak, J.J., and Załuska, W. (2017). Association between serum selenium concentrations and levels of proinflammatory and profibrotic cytokines-interleukin-6 and growth differentiation factor-15, in patients with alcoholic liver cirrhosis. Int. J. Environ. Res. Public Health 14, E437.Web of ScienceCrossrefPubMedGoogle Scholar

  • Ribas, V., García-Ruiz, C., and Fernández-Checa, J.C. (2014). Glutathione and mitochondria. Front. Pharmacol. 5, 151.PubMedGoogle Scholar

  • Richter, K. and Kietzmann, T. (2016). Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 365, 591–605.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Rua, R.M., Ojeda, M.L., Nogales, F., Rubio, J.M., Romero-Gómez, M., Funuyet, J., Murillo, M.L., and Carreras, O. (2014). Serum selenium levels and oxidative balance as differential markers in hepatic damage caused by alcohol. Life Sci. 94, 158–163.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sánchez-Valle, V., Chávez-Tapia, N.C., Uribe, M., and Méndez-Sánchez, N. (2012). Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem. 19, 4850–4860.CrossrefWeb of SciencePubMedGoogle Scholar

  • Schmidt-Arras, D. and Rose-John, S. (2016). IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Seki, E. and Brenner, D.A. (2015). Recent advancement of molecular mechanisms of liver fibrosis. J. Hepatobiliary Pancreat. Sci. 22, 512–518.PubMedCrossrefGoogle Scholar

  • Thuluvath, P.J. and Triger, D.R. (1992). Selenium in chronic liver disease. J. Hepatol. 14, 176–182.CrossrefPubMedGoogle Scholar

  • Tinggi, U. (2008). Selenium: its role as antioxidant in human health. Environ. Health Prev. Med. 13, 102–108.PubMedCrossrefGoogle Scholar

  • Valimaki, M.J., Harju, K.J., and Ylikahri, R.H. (1983). Decreased serum selenium in alcoholics – a consequence of liver dysfunction. Clin. Chim. Acta 130, 291–296.CrossrefPubMedGoogle Scholar

  • Vijayalakshmi, S., Prabhu, R.K., Mahalingam, T.R., and Mathews, C.K. (1992). A simple gas-liquid separator for continuous hydride introduction in ICP-MS. At. Spectrosc. 13, 26–28.Google Scholar

  • Watkinson, J.H. (1966). Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene. Anal. Chem. 38, 92–97.CrossrefPubMedGoogle Scholar

  • Zhang, C.Y., Yuan, W.G., He, P., Lei, J.H., and Wang, C.X. (2016). Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol. 22, 10512–10522.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

aDepartment of Biochemistry, Central Leather Research Institute, Adyar, Madras 600 020, India

Received: 2017-10-04

Accepted: 2018-01-11

Published Online: 2018-02-06

Published in Print: 2018-04-25

Conflicts of interest statement: The author does not have any conflicts of interest to declare in connection with this article.

Citation Information: Biological Chemistry, Volume 399, Issue 5, Pages 499–509, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2017-0260.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Stergios A. Polyzos, Jannis Kountouras, Antonis Goulas, and Leonidas Duntas
Hormones, 2019
Joseph George, Mikihiro Tsutsumi, and Mutsumi Tsuchishima
Scientific Reports, 2019, Volume 9, Number 1
Joseph George, Mutsumi Tsuchishima, and Mikihiro Tsutsumi
Cell Death & Disease, 2019, Volume 10, Number 1

Comments (0)

Please log in or register to comment.
Log in