Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 399, Issue 7


Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells

Amanda P.B. Albuquerque
  • Biomarkers in Cancer Research Group (BmC) – Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
  • Department of Biochemistry, Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Meritxell Balmaña
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
  • Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Mereiter
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
  • Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Filipe Pinto
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
  • Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Celso A. Reis
  • Corresponding author
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
  • Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
  • Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
  • Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo I.C. Beltrão
  • Corresponding author
  • Biomarkers in Cancer Research Group (BmC) – Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
  • Department of Biochemistry, Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-12 | DOI: https://doi.org/10.1515/hsz-2018-0121


Triple negative breast cancer (TNBC) is a major global public health problem. The lack of targeted therapy and the elevated mortality evidence the need for better knowledge of the tumor biology. Hypoxia and aberrant glycosylation are associated with advanced stages of malignancy, tumor progression and treatment resistance. Importantly, serum deprivation regulates the invasive phenotype and favors TNBC cell survival. However, in TNBC, the role of hypoxia and serum deprivation in the regulation of glycosylation remains largely unknown. The effects of hypoxia and serum deprivation on the expression of glycosyltransferases and glycan profile were evaluated in the MDA-MB-231 cell line. We showed that the overexpression of HIF-1α was accompanied by acquisition of epithelial-mesenchimal transition features. Significant upregulation of fucosyl- and sialyltransferases involved in the synthesis of tumor-associated carbohydrate antigens was observed together with changes in fucosylation and sialylation detected by Aleuria aurantia lectin and Sambucus nigra agglutinin lectin blots. Bioinformatic analysis further indicated a mechanism by which HIF-1α can regulate ST3GAL6 expression and the relationship within the intrinsic characteristics of TNBC tumors. In conclusion, our results showed the involvement of hypoxia and serum deprivation in glycosylation profile regulation of TNBC cells triggering breast cancer aggressive features and suggesting glycosylation as a potential diagnostic and therapeutic target.

This article offers supplementary material which is provided at the end of the article.

Keywords: cancer cell biology; glycosylation; glycosyltransferases; hypoxia; serum deprivation; triple negative breast cancer


  • Alley, W.R. Jr. and Novotony, M.V. (2010). Glycomic analysis of sialic acid linkages in glycans derived from blood serum glucoproteins. J. Proteome. Res. 9, 3062–3072.CrossrefGoogle Scholar

  • Aloia, A., Petrova, E., Tomiuk, S., Bissels, U., Déas, O., Saini, M., Zickgraf, F.M., Wagner, S., Spaich, S., Sütterlin, M., et al. (2015). The sialyl-glycolipid stage embryonic antigen 4 marks a subpopulation of chemotherapy resistant breast cancer with mesenchymal features. Breast Cancer Res. 17, 146.CrossrefGoogle Scholar

  • Ashkani, J. and Naidoo, K.J. (2016). Glycosyltransferase gene expression profiles classify cancer types and propose prognostic subtypes. Sci. Rep. 6, 26451.CrossrefPubMedGoogle Scholar

  • Badr, H.A., AlSadek, D.M., Mathew, M.P., Li, C.Z., Djansugurova, L.B., Yarema, K.J., and Ahmed, H. (2015). Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 70, 23–36.CrossrefPubMedGoogle Scholar

  • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.PubMedCrossrefGoogle Scholar

  • Belo, I., Vliet, S., Maus, A., Laan, L.C., Nauta, T.D., Koolwijk, P., Tefsen, B., and van Die, I. (2015). Hypoxia inducible factor 1a down regulates cell surface expression of a1,2-fucosylated glycans in human pancreatic adenocarcinoma cells. FEBS Lett. 589, 2359–2366.CrossrefGoogle Scholar

  • Britain, C.M., Dorsett, K.A., and Bellis, S.L. (2017). The glycosyltransferase ST6Gal-I protects tumor cells against serum growth factor withdrawal by enhancing survival signaling and proliferative potential. J. Biol. Chem. 11, 4663–4673.Google Scholar

  • Carrascal, M.A., Silva, M., Ramalho, J.S., Pen, C., Martins, M., Pascoal, C., Amaral, C., Serrano, I., Oliveira, M.J., Sackstein, R., et al. (2017). Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation and ERk1/2 and p38MAPK activation. Mol. Oncol. 12, 579–593.Google Scholar

  • Carvalho, P.C., Silva, A.S., Todeschini, A.R., and Dias, W.B. (2018). Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev. Din. 247, 481–491.CrossrefGoogle Scholar

  • Cazet, A., Julien, S., Bobowski, M., Burchell, J., and Delannoy, P. (2010). Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 12, 204.CrossrefPubMedGoogle Scholar

  • Chikarmane, S.A., Tirumani, S.H., Howard, S.A., Jagannathan, J.P., and DiPiro, P.J. (2015). Metastatic patterns of breast cancer subtypes: what radiologists should know in the era of personalized cancer medicine. Clin. Radiol. 1, 1–10.Google Scholar

  • Choi, J., Kim, H., Jung, W., and Koo, J.S. (2013). Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res. 15, R78.CrossrefPubMedGoogle Scholar

  • Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352.CrossrefPubMedGoogle Scholar

  • Duarte, H.O., Balmaña, M., Mereiter, S., Osório, H., Gomes, J., and Reis, C.A. (2017). Gastric cancer cell glycosylation as a modulator of the ErbB2 oncogenic receptor. Int. J. Mol. Sci. 18, 11.Google Scholar

  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 5, E359–E386.Google Scholar

  • Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948.CrossrefPubMedGoogle Scholar

  • Greville, G., McCann, A., Rudd, P., and Saldova, R. (2016). Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics 11, 845–857.CrossrefPubMedGoogle Scholar

  • Han, D., Wu, G., Chang, C., Zhu, F., Xiao, Y., Li, Q., Zhang, T., and Zhang, L. (2015). Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget 6, 40907–40919.PubMedGoogle Scholar

  • Henry, N.L. and Hayes, D.F. (2012). Cancer biomarkers. Mol. Oncol. 6, 140–146.CrossrefPubMedGoogle Scholar

  • Higai, K., Ichikawa, A., and Matsumoto, K. (2006). Binding of sialyl LewisX antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim. Biophys. Acta 1760, 1355–1363.PubMedCrossrefGoogle Scholar

  • Howlader, N., Altekruse, S.F., Li, C.I., Chen, V.W., Clarke, C.A., Ries, L.A., and Cronin, K.A. (2014). US incidence of breast cancer subtypes defined by Joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 106, 055.Google Scholar

  • Jeon, M., Kim, H., Jung, H., and Koo, J.S. (2013). Expression of cell metabolism-related genes in different molecular subtypes of triple-negative breast cancer. Tumori. J. 99, 555–564.CrossrefGoogle Scholar

  • Jones, R.B., Dorsett, K.A., Hjelmeland, A.B., and Bellis, S.L. (2018). The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J. Biol. Chem. 11, 4663–4673.Google Scholar

  • Julien, S., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Gouyer, V., Huet, G., Le Bourhis, X., and Delannoy, P. (2001). Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc α2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconj. J. 18, 883–893.PubMedCrossrefGoogle Scholar

  • Julien, S., Ivetic, A., Grigoriadis, A., QiZe, D., Burford, B., Sproviero, D., Picco, G., Gillett, C., Papp, S.L., Schaffer, L., et al. (2011). Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 24, 7683–7693.Google Scholar

  • Julien, S., Videira, P.A., and Delannoy, P. (2012). Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 4, 435–466.Google Scholar

  • Jung, Y., Fattet, L., and Yang, J. (2015a). Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin. Cancer Res. 21, 962–968.CrossrefGoogle Scholar

  • Jung, S., Li, C., Duan, J., Lee, S., Kim, K., Park, Y., Yang, Y., Kim, K.I., Lim, J.S., Cheon, C.I., et al. (2015b). TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget 30, 29060–29075.Google Scholar

  • Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., van der Lee, R., Bessy, A., Chèneby, J., Kulkarni, S.R., Tan, G., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266.CrossrefGoogle Scholar

  • Kim, S., Kim, H., Jung, H., and Koo, J.S. (2013). Metabolic phenotypes in triple-negative breast cancer. Tumour Biol. 34, 1699–1712.CrossrefPubMedGoogle Scholar

  • Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., et al. (2004). Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 21, 8132–8137.Google Scholar

  • Kondaveeti, Y., Guttilla Reed, I.K., and White, B.A. (2015). Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Lett. 364, 44–58.CrossrefPubMedGoogle Scholar

  • Kuo, C.Y., Cheng, C.T., Hou, P., Lin, Y.P., Ma, H., Chung, Y., Chi, K., Chen, Y., Li, W., Kung, H.J., et al. (2016). HIF-1-α links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget 7, 34052–34069.PubMedGoogle Scholar

  • Kyselova, Z., Mechref, Y., Kang, P., Goetz, J.A., Dobrolecki, L.E., Sledge, G.W., Schnaper, L., Hickey, R.J., Malkas, L.H., and Novotny, M.V. (2008). Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin. Chem. 7, 1166–1175.Google Scholar

  • Li, L. and Li, W. (2015). Epithelial mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol. Ther. 150, 33–46.PubMedCrossrefGoogle Scholar

  • Lucena, M.C., Carvalho, C.P., Donadio, J.L., Oliveira, I.A., de Queiroz, R.M., Marinho-Carvalho, M.M., Sola-Penna, M., de Paula, I.F., Gondim, K.C., McComb, M.E., et al. (2016). Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J. Biol. Chem. 291, 12917–12929.PubMedCrossrefGoogle Scholar

  • Lundgren, K., Holm, C., and Landberg, G. (2007). Hypoxia and breast cancer: prognostic and therapeutic implications. Cell. Mol. Life Sci. 64, 3233–3247.PubMedGoogle Scholar

  • Mahmoodi, N., Motamed, N., Paylakhi, S.H., and O Mahmoodi, N. (2015). Comparing the effect of silybin and silybin Advanced™ on viability and HER2 expression on the human breast cancer SKBR3 cell line by no serum starvation. Iran J. Pharm. Res. 2, 521–530.Google Scholar

  • Marchiq, I. and Pouysségur, J. (2016). Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H+ symporters. J. Mol. Med. 94, 155–171.PubMedCrossrefGoogle Scholar

  • Mejías-Luque, R., López-Ferrer, A., Garrido, M., Fabra, A., and de Bólos, C. (2007). Changes in the invasive and metastatic capacities of HT-29/M3 cells induced by the expression of fucosyltransferase 1. Cancer Sci. 7, 1000–1005.Google Scholar

  • Milde-Langosch, K., Karn, T., Schmidt, M., zu Eulenburg, C., Oliveira-Ferrer, L., Wirtz, R.M., Schumacher, U., Witzel, I., Schütze, D., and Müller, V. (2014). Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res. Treat. 145, 295–305.PubMedCrossrefGoogle Scholar

  • Monzavi-Karbassi, B., Pashov, A., and Kieber-Emmons, T. (2013). Tumor-associated glycans and immune surveillance. Vaccines (Basel) 1, 174–203.PubMedCrossrefGoogle Scholar

  • Natoni, A. and O’Dwyer, M.E. (2016). Targeting selectins and their ligands in cancer. Front Oncol. 18, 93.Google Scholar

  • Nutt, J.E. and Lunec, J. (1996). Induction of metalloproteinase (MMP1) expression by epidermal growth factor (EGF) receptor stimulation and serum deprivation in human breast tumour cells. Eur. J. Cancer. 12, 2127–2135.Google Scholar

  • Peixoto, A., Fernandes, E., Gaiteiro, C., Lima, L., Azevedo, R., Soares, J., Cotton, S., Parreira, B., Neves, M., Amaro, T., et al. (2016). Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 7, 63138–63157.PubMedGoogle Scholar

  • Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature. 406, 747–752.CrossrefPubMedGoogle Scholar

  • Pinho, S.S. and Reis, C.A. (2015). Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555.CrossrefPubMedGoogle Scholar

  • Potapenko, I.O., Lüders, T., Russnes. H.G., Helland, Å., Sorlie, T., Kristensen, V.N., Nord, S., Lingjærde, O.C., Borresen-Dale, A.L., and Haakensen, V.D. (2015). Glycan-related gene expression signatures in breast cancer subtypes; relation to survival. Mol. Oncol. 4, 861–876.Google Scholar

  • Reis, C.A., Osorio, H., Silva, L., Gomes, C., and David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329.PubMedCrossrefGoogle Scholar

  • Reshkin, S.J., Bellizzi, A., Albarani, V., Guerra, L., Tommasino, M., Paradiso, A., and Casavola, V. (2000). Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na+/H+ exchange, motility, and invasion induced by serum deprivation. J. Biol. Chem. 8, 5361–5369.Google Scholar

  • Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. (2004). A cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6.CrossrefPubMedGoogle Scholar

  • Schultz, M.J., Swindall, A.F., and Bellis, S.L. (2012). Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 3–4, 501–518.Google Scholar

  • Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408.CrossrefPubMedGoogle Scholar

  • Sewell, R., Bäckström, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gätgens, J., Clausen, H., Hansson, G.C., Burchell, J., et al. (2006). The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586–3594.PubMedCrossrefGoogle Scholar

  • Shirure, S., Liu, T., Delgadillo, F., Cuckler, C.M., Tees, D.F., Benencia, F., Goetz, D.J., and Burdick, M.M. (2015). CD44 variant isoforms expressed by breast cancer cells are functional E – selectin ligands under flow conditions. Am. J. Physiol. Cell Physiol. 308, C68–C78.Google Scholar

  • Tan, Z., Wang, C., Li, X., and Guan, F. (2018). Bisecting N-acetylglucosamine structures inhibit hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Front. Physiol. 9, 210.PubMedCrossrefGoogle Scholar

  • Vaupel, P. and Hockel, M. (2000). Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int. J. Oncol. 17, 869–879.PubMedGoogle Scholar

  • Wang, W., He, Y.F., Sun, Q.K., Wang, Y., Han, X.H., Peng, D.F., Yao, Y.W., Ji, C.S., and Hu, B. (2014a). Hypoxia-inducible factor 1α in breast cancer prognosis. Clin. Chim. Acta 428, 32–37.CrossrefGoogle Scholar

  • Wang, F., Chang, M., Shi, Y., Jiang, L., Zhao, J., Hai, L., Sharen, G., and Du, H. (2014b). Down-regulation of hypoxia-inducible factor-1 suppresses malignant biological behavior of triple-negative breast cancer cells. Int. J. Clin. Exp. Med. 11, 3933–3940.Google Scholar

  • Wu, C.Y., Guo, X.Z., and Li, H.Y. (2015). Hypoxia and serum deprivation protected MiaPaCa-2 cells from KAI1-induced proliferation inhibition through autophagy pathway activation in solid tumors. Clin. Transl. Oncol. 3, 201–208.Google Scholar

  • Yakisich, J.S., Venkatadri, R., Azad, N., and Yver, A.K.V. (2017). Chemoresistance of lung and breast cancer cells growing under prolonged periods of serum starvation. J. Cell Physiol. 8, 2033–2043.Google Scholar

  • Ye, Q., Kantonen, S., and Gomez-Cambronero, J. (2013). Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion. Mol. Biol. 4, 755–766.Google Scholar

  • Yevshin, I.S., Sharipov, R.N., Valeev, T.F., Kel, A., and Kolpkov, F. (2017). GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 45, D61–D67.CrossrefGoogle Scholar

  • Zhuo, Y. and Bellis, S.L. (2011). Emerging role of α2,6-sialic acid as a negative regulator of galectin binding and function. J. Biol. Chem. 8, 5935–5941.Google Scholar

  • Zi, C., Wu, Z., Wang, J., Huo, Y., Zhu, G., Wu, S., and Bao, W. (2013). Transcriptional activity of the FUT1 gene promoter region in pigs. Int. J. Mol. Sci. 14, 24126–24134.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-01-15

Accepted: 2018-04-27

Published Online: 2018-06-12

Published in Print: 2018-06-27

Citation Information: Biological Chemistry, Volume 399, Issue 7, Pages 661–672, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0121.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in