Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 399, Issue 9

Issues

Novel splice variants of the human kallikrein-related peptidases 11 (KLK11) and 12 (KLK12), unraveled by next-generation sequencing technology

Panagiotis G. Adamopoulos
  • Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15701 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christos K. KontosORCID iD: http://orcid.org/0000-0002-9935-8461 / Andreas ScorilasORCID iD: http://orcid.org/0000-0003-2427-4949
Published Online: 2018-06-06 | DOI: https://doi.org/10.1515/hsz-2017-0294

Abstract

Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. In this study, we describe the molecular cloning of four novel splice variants of the human KLK11 and KLK12 genes, discovered by combining 3′ rapid amplification of cDNA ends (3′ RACE), next-generation sequencing (NGS) technology, advanced bioinformatic analysis and Sanger sequencing. Expression analysis of these new transcripts in cell lines originating from 17 cancerous and two normal tissues revealed the expression pattern of each transcript. These novel KLK11 and KLK12 splice variants represent new potential cancer biomarkers.

This article offers supplementary material which is provided at the end of the article.

Keywords: alternative splicing; alternative transcripts; kallikreins; NGS; serine proteases; splice variants

References

  • Adamopoulos, P.G., Kontos, C.K., and Scorilas, A. (2017a). Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing. Biochem. Biophys. Res. Commun. 487, 776–781.Web of ScienceCrossrefGoogle Scholar

  • Adamopoulos, P.G., Kontos, C.K., and Scorilas, A. (2017b). Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 – KLK9), using next-generation sequencing. Sci. Rep. 7, 17299.CrossrefWeb of ScienceGoogle Scholar

  • Alexopoulou, D.K., Kontos, C.K., Christodoulou, S., Papadopoulos, I.N., and Scorilas, A. (2014). KLK11 mRNA expression predicts poor disease-free and overall survival in colorectal adenocarcinoma patients. Biomark. Med. 8, 671–685.Web of ScienceCrossrefPubMedGoogle Scholar

  • Avgeris, M. and Scorilas, A. (2016). Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin. Ther. Targets 20, 801–818.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Avgeris, M., Mavridis, K., and Scorilas, A. (2010). Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biol. Chem. 391, 505–511.Web of SciencePubMedGoogle Scholar

  • Borgono, C.A. and Diamandis, E.P. (2004). The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4, 876–890.PubMedCrossrefGoogle Scholar

  • Clark, H.F., Gurney, A.L., Abaya, E., Baker, K., Baldwin, D., Brush, J., Chen, J., Chow, B., Chui, C., Crowley, C., et al. (2003). The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 13, 2265–2270.CrossrefPubMedGoogle Scholar

  • Geng, X., Liu, Y., Diersch, S., Kotzsch, M., Grill, S., Weichert, W., Kiechle, M., Magdolen, V., and Dorn, J. (2017). Clinical relevance of kallikrein-related peptidase 9, 10, 11, and 15 mRNA expression in advanced high-grade serous ovarian cancer. PLoS One 12, e0186847.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Kurlender, L., Borgono, C., Michael, I.P., Obiezu, C., Elliott, M.B., Yousef, G.M., and Diamandis, E.P. (2005). A survey of alternative transcripts of human tissue kallikrein genes. Biochim. Biophys. Acta 1755, 1–14.PubMedGoogle Scholar

  • Planque, C., Choi, Y.H., Guyetant, S., Heuze-Vourc’h, N., Briollais, L., and Courty, Y. (2010). Alternative splicing variant of kallikrein-related peptidase 8 as an independent predictor of unfavorable prognosis in lung cancer. Clin. Chem. 56, 987–997.Web of ScienceCrossrefPubMedGoogle Scholar

  • Sano, A., Sangai, T., Maeda, H., Nakamura, M., Hasebe, T., and Ochiai, A. (2007). Kallikrein 11 expressed in human breast cancer cells releases insulin-like growth factor through degradation of IGFBP-3. Int. J. Oncol. 30, 1493–1498.PubMedGoogle Scholar

  • Shaw, J.L. and Diamandis, E.P. (2007). Distribution of 15 human kallikreins in tissues and biological fluids. Clin. Chem. 53, 1423–1432.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Talieri, M., Devetzi, M., Scorilas, A., Pappa, E., Tsapralis, N., Missitzis, I., and Ardavanis, A. (2012). Human kallikrein-related peptidase 12 (KLK12) splice variants expression in breast cancer and their clinical impact. Tumour Biol. 33, 1075–1084.CrossrefPubMedGoogle Scholar

  • Venables, J.P. (2006). Unbalanced alternative splicing and its significance in cancer. Bioessays 28, 378–386.PubMedCrossrefGoogle Scholar

  • Wen, Y.G., Wang, Q., Zhou, C.Z., Yan, D.W., Qiu, G.Q., Yang, C., Tang, H.M., and Peng, Z.H. (2011). Identification and validation of kallikrein-ralated peptidase 11 as a novel prognostic marker of gastric cancer based on immunohistochemistry. J. Surg. Oncol. 104, 516–524.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Yoon, H., Laxmikanthan, G., Lee, J., Blaber, S.I., Rodriguez, A., Kogot, J.M., Scarisbrick, I.A., and Blaber, M. (2007). Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J. Biol. Chem. 282, 31852–31864.Web of ScienceCrossrefPubMedGoogle Scholar

  • Yoshida, S., Taniguchi, M., Suemoto, T., Oka, T., He, X., and Shiosaka, S. (1998). cDNA cloning and expression of a novel serine protease, TLSP. Biochim. Biophys. Acta 1399, 225–228.CrossrefPubMedGoogle Scholar

  • Yousef, G.M., Chang, A., Scorilas, A., and Diamandis, E.P. (2000a). Genomic organization of the human kallikrein gene family on chromosome 19q13.3-q13.4. Biochem. Biophys. Res. Commun. 276, 125–133.CrossrefGoogle Scholar

  • Yousef, G.M., Magklara, A., and Diamandis, E.P. (2000b). KLK12 is a novel serine protease and a new member of the human kallikrein gene family-differential expression in breast cancer. Genomics 69, 331–341.CrossrefGoogle Scholar

  • Zhang, J., Sun, X., Qian, Y., and Maquat, L.E. (1998). Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-11-27

Accepted: 2018-04-15

Published Online: 2018-06-06

Published in Print: 2018-09-25


Citation Information: Biological Chemistry, Volume 399, Issue 9, Pages 1065–1071, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2017-0294.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in