Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 400, Issue 1


Biological and medical applications of plasma-activated media, water and solutions

Nagendra Kumar Kaushik
  • Corresponding author
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bhagirath Ghimire
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Li
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manish Adhikari
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mayura Veerana
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Neha Kaushik / Nayansi Jha / Bhawana Adhikari
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Su-Jae Lee / Kai Masur / Thomas von Woedtke / Klaus-Dieter Weltmann / Eun Ha Choi
  • Corresponding author
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-24 | DOI: https://doi.org/10.1515/hsz-2018-0226


Non-thermal atmospheric pressure plasma has been proposed as a new tool for various biological and medical applications. Plasma in close proximity to cell culture media or water creates reactive oxygen and nitrogen species containing solutions known as plasma-activated media (PAM) or plasma-activated water (PAW) – the latter even displays acidification. These plasma-treated solutions remain stable for several days with respect to the storage temperature. Recently, PAM and PAW have been widely studied for many biomedical applications. Here, we reviewed promising reports demonstrating plasma-liquid interaction chemistry and the application of PAM or PAW as an anti-cancer, anti-metastatic, antimicrobial, regenerative medicine for blood coagulation and even as a dental treatment agent. We also discuss the role of PAM on cancer initiation cells (spheroids or cancer stem cells), on the epithelial mesenchymal transition (EMT), and when used for metastasis inhibition considering its anticancer effects. The roles of PAW in controlling plant disease, seed decontamination, seed germination and plant growth are also considered in this review. Finally, we emphasize the future prospects of PAM, PAW or plasma-activated solutions in biomedical applications with a discussion of the mechanisms and the stability and safety issues in relation to humans.

Keywords: anticancer; antimicrobial; cold atmospheric pressure plasma; dental application; plasma-activated media; plasma-activated water


  • Acquaah, G. (2007). Principles of Plant Genetics and Breeding (Chichester, UK: John Wiley & Sons, Ltd.).Google Scholar

  • Adachi, T., Tanaka, H., Nonomura, S., Hara, H., Kondo, S., and Hori, M. (2015). Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic. Biol. Med. 79, 28–44.CrossrefGoogle Scholar

  • Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., Hori, M., Sakakita, H., and Ikehara, Y. (2016). Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94.CrossrefPubMedGoogle Scholar

  • Andrian, E., Grenier, D., and Rouabhia, M. (2006). Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J. Dent. Res. 85, 392–403.CrossrefPubMedGoogle Scholar

  • Aruoma, O.I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212.CrossrefGoogle Scholar

  • Attri, P., Kim, Y., Park, D., Park, J., Hong, Y., Uhm, H., Kim, K., Fridman, A., and Choi, E. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 5, 9332.CrossrefPubMedGoogle Scholar

  • Baek, E., Joh, H., Kim, S., and Chung, T. (2016). Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets. Phys. Plasmas 23, 073515.CrossrefGoogle Scholar

  • Baier, M., Foerster, J., Schnabel, U., Knorr, D., Ehlbeck, J., Herppich, W.B., and Schloter, O. (2013). Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol. Technol. 84, 81–87.CrossrefGoogle Scholar

  • Barba-Espín, G., Hernández, J.A., and Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant Signal. Behav. 7, 193–195.CrossrefGoogle Scholar

  • Barkai-Golan, R. (2001). Postharvest Diseases of Fruits and Vegetables: Development and Control (Amsterdam, The Netherlands: Elsevier Science), pp. 25–32.Google Scholar

  • Bekeschus, S., Schmidt, A., Weltmann, K.-D., and von Woedtke, T. (2016). The plasma jet kINPen – a powerful tool for wound healing. Clin. Plasma Med. 4, 19–28.CrossrefGoogle Scholar

  • Beuchat, L.R., Clavero, M.R., and Jaquette, C.B. (1997). Effect of nisin and temperature on survival, growth and enterotoxin production characteristics of psychotropic B. cereus in beef gravy. Appl. Environ. Microbiol. 63, 1953–1958.Google Scholar

  • Boehm, D., Curtin, J., Cullen, P.J., and Bourke, P. (2017). Hydrogen peroxide and beyond-the potential of high-voltage plasma-activated liquids against cancerous cells. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801110517. (Epub ahead of print).Google Scholar

  • Bowen, C.G., Greenwood, W., Guevara, P., and Washington, M.A. (2015). Effectiveness of a dental unit waterline treatment protocol with A-Dec ICX and Citrisil Disinfectants. Mil Med. 180, 1098–1104.CrossrefPubMedGoogle Scholar

  • Braginsky, O., Vasilieva, A., Klopovskiy, K., Kovalev, A., Lopaev, D., Proshina, O., Rakhimova, T., and Rakhimov, A. (2005). Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode. J. Phys. D Appl. Phys. 38, 3609.CrossrefGoogle Scholar

  • Brandenburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26, 053001.CrossrefGoogle Scholar

  • Brisset, J. and Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem. Plasma Process. 36, 355–381.CrossrefGoogle Scholar

  • Bruggeman, P. and Leys, C. (2009). Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 42, 053001–053029.CrossrefGoogle Scholar

  • Brune, B. (2003). Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869.CrossrefPubMedGoogle Scholar

  • Burlica, R., Kirkpatrick, M.J., and Locke, B.R. (2006). Formation of reactive species in gliding arc discharges with liquid water. J. Electrostat. 64, 35–43.CrossrefGoogle Scholar

  • Chauvin, J., Judée, F., Yousfi, M., Vicendo, P., and Merbahi, N. (2017). Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci. Rep. 7, 4562.CrossrefPubMedGoogle Scholar

  • Chen, Z., Lin, L., Chenx X., Gjika E., and Keidar, M. (2016). Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process. Polym. 13, 1–6.Google Scholar

  • Chen, Z., Krasik, Y., Cousens, S., Ambujakshan, A., Corr, C., and Dai, X. (2017). Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J. Appl. Phys. 122, 153303.CrossrefGoogle Scholar

  • Cheng, Y.U., Wu, C.H., Liu, C.T., Lin, C.Y., Chiang, H.P., Chen, T.W., Chen, C.Y., and Wu, J.S. (2017). Tooth bleaching by using a helium-based low-temperature atmospheric pressure plasma jet with saline solution. Plasma Process. Polym. 14, 1600235.CrossrefGoogle Scholar

  • Dai, X., Corr, C., Ponraj, S., Maniruzzaman, M., Ambujakshan, A., Chen, Z., Kviz, L., Lovett, R., Rajmohan, G., Celis, D., et al. (2015). Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process. Polym. 13, 306–310.Google Scholar

  • Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A. (2009). Physical and biological mechanisms of plasma interaction with living tissue. New J. Phys. 11, 1–26.Google Scholar

  • Duan, J., Lu, X., and He, J. (2017). The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. J. Appl. Phys. 121, 013302.CrossrefGoogle Scholar

  • Dvorak, P., Mrkvickova, M., Obrusnik, A., Kratzer, J., Dedina, J., and Prochazka, V. (2017). Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge. Plasma Sources Sci. Technol. 26, 065020.CrossrefGoogle Scholar

  • Ercan, U.K., Wang, H., Ji, H., Fridman, G., Brooks, A.D., and Joshi, S.G. (2013). Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process. Polym. 10, 544–555.CrossrefGoogle Scholar

  • Fridman, A., Chirokov, A., and Gutsol, A. (2005). Non-thermal atmospheric pressure discharges. J. Phys D Appl. Phys. 38, 1–24.CrossrefGoogle Scholar

  • Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., and Fridman, A. (2008). Applied plasma medicine. Plasma Process. Polym. 5, 503–533.CrossrefGoogle Scholar

  • Friedline, A., Zachariah, M., Middauch, A., Heiser, M., Khanna, N., Vaishampayan, P., and Rice, C. (2015). Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide. AMB Express. 5, 24.PubMedCrossrefGoogle Scholar

  • Fthollah, S., Mirpour, S., Mansouri, P., Dehpour, A., Ghoranneviss, M., Rahimi, N., Naraghi, Z., Chalangari, R., and Chalangari, K. (2016). Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci. Rep. 6, 19144.CrossrefPubMedGoogle Scholar

  • Ghimire, B., Sornsakdanuphap, J., Hong, Y., Uhm, H., Weltmann, K., and Choi, E. (2017). The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations. Phys. Plasmas 24, 073502.CrossrefGoogle Scholar

  • Girard, P., Arbabian, A., Fluery, M., Bauville, G., Puech, V., Dutreix, M., and Sousa, J. (2016). Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Sci. Rep. 1, 29098.Google Scholar

  • Gorbanev, Y., O’Connell, D., and Chechik, V. (2016). Non-thermal plasma in contact with water: the origin of species. Chemistry 22, 10.Google Scholar

  • Graves, D.B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 45, 263001.CrossrefGoogle Scholar

  • Guyader, P., Amgar, A., and Coignard, M. (1996) La désinfection. In: Microbiologie Alimentaire Tome 1 ed. C.M. Bourgeois, J.F. Mescle and J. Zucca, eds. (Paris: Tec et Doc Lavoisier), pp. 441–460.Google Scholar

  • Haertel, B., Woedtke, T., Weltmann, K., and Lindequist, U. (2014). Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 22, 477–490.CrossrefGoogle Scholar

  • Harrison, F.E. (2012). A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J. Alzheimers Dis. 29, 711–726.PubMedCrossrefGoogle Scholar

  • Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., Nosenko, T., Zimmermann, J., and Karrer, S. (2011). Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 25, 1–11.CrossrefPubMedGoogle Scholar

  • Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Vioel, W., and Weltmann, K.D. (2011). Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process. Polym. 8, 278–286.CrossrefGoogle Scholar

  • Hong, S.J., Dawson, T.M., and Dawson, V.L. (2004). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 25, 259–264.CrossrefPubMedGoogle Scholar

  • Horiba, M., Kamiya, T., Hara, H., and Adachi, T. (2017). Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts. Sci. Rep. 7, e42208.CrossrefGoogle Scholar

  • Horikoshi, S. and Serpone, N. (2017). In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv. 7, 47196–47218.CrossrefGoogle Scholar

  • Ikeda, J.I., Tanaka, H., Ishikawa, K., Sakakita, H., Ikehara, Y., and Hori, M. (2018). Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol. Int. 68, 23–30.PubMedCrossrefGoogle Scholar

  • Ikehara, Y., Sakakita, H., Shimizu, N., Ikehara, S., and Nakanish, H. (2013). Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J. Photopolym. Sci. Technol. 26, 555–557.CrossrefGoogle Scholar

  • Io, T., Uchida, G., Nakajima, A., Takenaka, K., and Setsuhara, Y. (2016). Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Jpn. J. Appl. Phys. 56, 01AC06.Google Scholar

  • Iseki, S., Nakamura, K., Hayashi, M., Tanaka, H., Kondo, H., Kajiyama, H., Kano, H., Kikkawa, F., and Hori, M. (2012). Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100, 113702.CrossrefGoogle Scholar

  • Ishida, C., Mori, M., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., Iwase, A., Kikkawa, F., and Toyokuni, S. (2016). Non-thermal plasma prevents progression of endometriosis in mice. Free Rad. Res. 50, 1131–1139.CrossrefGoogle Scholar

  • Ismael, S.Z., Khandaker, M.M., Mat, N., and Boyce, A.N. (2015). Effects of hydrogen peroxide on growth, development and quality of fruits: a review. J. Agron. 14, 331–336.CrossrefGoogle Scholar

  • Jablonowski, H. and Woedtke, T.V. (2015). Research on plasma medicine-relevant plasma liquid interaction: what happened in the past five years? Clin. Plasma Med. 3, 42–52.CrossrefGoogle Scholar

  • Janda, M., Sovits, V.M., Hensel, K., and Machala, Z. (2016). Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem. Plasma Process. 36, 767–781.CrossrefGoogle Scholar

  • Jha, N., Ryu, J.J., Choi, E.H., and Kaushik, N.K. (2017). Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid. Med. Cell Longev. 2017, 7542540.PubMedGoogle Scholar

  • Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A., and Brooks, A.D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55, 1053–1062.CrossrefPubMedGoogle Scholar

  • Joslin, J., McCall, J.R., Bzdek, J., Johnson, D., and Hybertson, B. (2016). Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 6, 135–177.CrossrefPubMedGoogle Scholar

  • Judée, F., Fongia, C., Ducommun, F., Yousfi, M., Lobjois, V., and Merbahi, N. (2016). Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci. Rep. 6, 21421.CrossrefGoogle Scholar

  • Judée, F., Simon, S., and Dufour, T. (2018). Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 133, 47–59.CrossrefPubMedGoogle Scholar

  • Kalghatgi, S., Friedman, G., Fridman, A., and Clyne, A.M. (2010). Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38, 748–757.PubMedCrossrefGoogle Scholar

  • Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., Brisset, J.L., Doubla, A., and Naïtali, M. (2007). Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Appl. Environ. Microbiol. 73, 4791–4796.CrossrefPubMedGoogle Scholar

  • Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naïtali, M. (2008). Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by plasma activated water. Appl. Microbiol. Biotechnol. 81, 449–457.CrossrefPubMedGoogle Scholar

  • Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naıtali, M. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 48, 13–18.CrossrefPubMedGoogle Scholar

  • Kang, Z.Q. (2016). The bleaching efficiency and bio-safety assessment of plasma activated water by low conc. H2O2. Global Thesis. 2016.Google Scholar

  • Kaushik, N.K., Kaushik, N., Yoo, K.C., Uddin, N., Kim, J.S., Lee, S.-J., and Choi, E.H. (2016). Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 87, 118–130.CrossrefPubMedGoogle Scholar

  • Kawasaki, T., Kusumegi, S., Kudo, A., Sakanoshita, T., Tsurumaru, T., and Sato, A. (2016). Effects of gas flow rate on supply of reactive oxygen species into a target through liquid layer in cold plasma jet. IEEE Trans. Plasma Sci. 44, 3223.CrossrefGoogle Scholar

  • Kayes, M.M., Critzer, F.J., Kelly-Wintenberg, K., Roth, J.R., Montie, T.C., and Golden, D.A. (2007). Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog. Dis. 4, 50–59.PubMedCrossrefGoogle Scholar

  • Keidar, M., Shashurin, A., Volotskova, O., Stepp, M., Srinivasan, P., Sandler, A., and Trink, B. (2013). Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20, 057101.CrossrefGoogle Scholar

  • Kim, P.K., Zamora, R., Petrosko, P., and Billiar, T.R. (2001). The regulatory role of nitric oxide in apoptosis. Int. J. Immunopharmacol. 1, 1421–1441.CrossrefGoogle Scholar

  • Kim, S.J., Chung, T.H., Bae, S.H., and Leem, S.H. (2009). Bacteria inactivation using atmospheric pressure single pin electrode microplasma jet with a group ring. Appl. Phys. Lett. 94, 141502.CrossrefGoogle Scholar

  • Kim, Y., Hong, Y., Baik, K., Kwon, G., Choi, J. Cho, G, Uhm, H., Kim, D., and Choi, E. (2014). Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chem. Plasma Process. 34, 457.CrossrefGoogle Scholar

  • Kim, Y., Jin, S., Han, G., Kwon, G., Choi, J., Choi, E., Uhm, S., and Cho, G. (2015). Plasma apparatuses for biomedical applications. IEEE Trans. Plasma Sci. 43, 944.CrossrefGoogle Scholar

  • King, D.A., Sheafor, M.W., and Hurst, J.K. (2006). Comparative toxicities of putative phagocyte-generated oxidizing radicals toward a bacterium (Escherichia coli) and a yeast (Saccharomyces cerevisiae). Free Radic. Biol. Med. 41, 765–774.CrossrefGoogle Scholar

  • Knake, N., Reuter, S., Niemi, K., Schulz, V., and Winter, J. (2008). Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 41, 194006.CrossrefGoogle Scholar

  • Koban, I., Holtfreter, B., Hübner, N.O., Matthes, R., Sietmann, R., Kindel, E., Weltmann, K.D., Welk, A., Kramer, A., and Kocher, T. (2011). Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro – proof of principle experiment. J. Clin. Periodontol. 38, 956–965.PubMedCrossrefGoogle Scholar

  • Kolb, J.F., Mohamed, A.A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., and Schoenbach, K.H. (2008). Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92, 241501.CrossrefGoogle Scholar

  • Kostov, K., Machida, M., Prysiazhnyi, V., and Honda, R. (2015). Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube. Plasma Sources Sci. Technol. 24, 025038.CrossrefGoogle Scholar

  • Kumar, N., Park, J.H., Jeon, S.N., Park, B.S., Choi, E.H., and Attri, P. (2016). The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells. J. Phys. D 49, 115401.CrossrefGoogle Scholar

  • Kuninova, S., Zaviskova, K., Uherkova, L., Zablotskii, V., Churpita, O., Lunov, O., and Dejneka, A. (2017). Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci. Rep. 7, 45183.PubMedCrossrefGoogle Scholar

  • Kuok, S.N. (2017). Theory of low-temperature physics. In: Springer Series on Atomic, Optical and Plasma Physics, Vol. 95. ISBN: 978-3-319-43719-4. DOI: 10.1007/978-3-319-43721-7.Google Scholar

  • Kurake, N., Tanaka, H., Ishikawa, K., Kondo, T., Sekine, M., Nakamura, K., Kajiyama, H., Kikkawa, F., Mizuno, M., and Hori, M. (2016). Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102–108.CrossrefPubMedGoogle Scholar

  • Kurake, N., Tanaka, H., Ishikawa, K., Takeda, K., Hashizume, H., Nakamura, K., Kajiyama, H, Kondo, T., Kikkawa, F., Mizuno, M., et al. (2017). Effects of ˙OH and ˙NO radicals in the aqueous phase on H2O2 and NO2 generated in plasma-activated medium. J. Phys. D Appl. Phys. 50, 155202.CrossrefGoogle Scholar

  • Kurita, M., Shimizu, M., Sano, K., Nakajima, T., Yasuda, H., Takashima, K., and Mizuno, A. (2014). Radical reaction in aqueous media injected by atmospheric pressure plasma jet and protective effect of antioxidant reagents evaluated by single-molecule DNA measurement. Jap. J. Appl. Phys. 53, 05FR01.CrossrefGoogle Scholar

  • Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 1409–1455.CrossrefGoogle Scholar

  • Laroussi, M. (2005). Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2, 391400.Google Scholar

  • Laroussi, M. and Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81–86.CrossrefGoogle Scholar

  • Laroussi, M., Mendis, D.A., and Rosenberg, M. (2003). Plasma interaction with microbes. New J. Phys. 5, 41.1–41.10.Google Scholar

  • Laroussi, M., Lu, X., and Keidar, M. (2017). Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901. DOI: 10.1063/1.4993710.CrossrefGoogle Scholar

  • Laurita, R., Barbieri, D., Gherardi, M., Colombo, V., and Lukes, P. (2015). Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 3, 53–61.CrossrefGoogle Scholar

  • Levko, D., Sharma, A., and Raja, L. (2016). Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma. J. Phys. D Appl. Phys. 49, 285205.CrossrefGoogle Scholar

  • Li, Y., Kang, M.H., Uhm, H.S., Lee, G.J., Choi, E.H., and Han, I. (2017a). Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 7, 45781.CrossrefGoogle Scholar

  • Li, Y., Pan, J., Ye, G., Zhang, Q., Wang, J., Zhang, J., and Fang, J. (2017b). In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125, 463–470.CrossrefGoogle Scholar

  • Liebermann, D.A., Hoffman, B., and Steinman, R.A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210.PubMedGoogle Scholar

  • Lin, A., Truong, B., Patel, S., Kaushik, N., Choi, E.H., Fridman, G., Fridman, A., and Miller, V. (2017). Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. Int. J. Mol. Sci. 18, 966.CrossrefGoogle Scholar

  • Linley, E., Denyer, S., McDonnell, G., Simons, C., and Maillard, J. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother. 67, 1589–1596.PubMedCrossrefGoogle Scholar

  • Liu, D.X., Liu, Z.C., Chen, C. Yang, A.J., Li,D., Rong, M.Z., Chen, H.L., and Kong, M.G. (2016). Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 6, 23737.CrossrefPubMedGoogle Scholar

  • Lotfy, K. (2016). Cold atmospheric plasma and oxidative stress: reactive oxygen species vs. antioxidant. Austin Biochem. 1, 1001.Google Scholar

  • Lu, X., Jiang, Z., Xiong, Q., Tang, Z., and Pan, Y. (2008). A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett. 92, 151504.CrossrefGoogle Scholar

  • Lu, T., Qiao, Y., and Liu, X. (2012a). Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2, 325–336.CrossrefGoogle Scholar

  • Lu, X., Laroussi, M., and Puech, V. (2012b). On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21, 034005.CrossrefGoogle Scholar

  • Lu, X., Naidis, G.V., Laroussi, M., Reuter, S., Graves, D.B., and Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys. Rep. 630, 1–84.CrossrefGoogle Scholar

  • Lukes, P., Brisset, J.L., and Locke, B.R. (2012). Biological effects of electrical discharge plasma in water and in gas-liquid environments. In: Plasma Chemistry and Catalysis in Gases and Liquids, pp. 309–352. ISBN: 9783527330065. DOI: 10.1002/9783527649525.ch8.Google Scholar

  • Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 23, 015019.CrossrefGoogle Scholar

  • Ma, R., Feng, H., Li, F., Liang, Y., Zhang, Q., Zhu, W., Zhang, J., Becker, K.H., and Fang, J. (2012). An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl. Phys. Lett. 100, 12370.Google Scholar

  • Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., and Fang, J. (2015). Non thermal plasma activated water inactivation of food borne pathogen on fresh produce. J. Hazard. Mat. 300, 643–651.CrossrefGoogle Scholar

  • Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., and Fang, J. (2016). Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprod. Technol. 9, 1825–1834.CrossrefGoogle Scholar

  • Maheux, S., Duday, D., Belmonte, T., Penny, C., Cauchie, H.M., Clément, F., and Choquet, P. (2015). Formation of ammonium in saline solution treated by nanosecond pulsed cold atmospheric microplasma: a route to fast inactivation of E. coli bacteria. RSC Adv. 5, 42135–42140.Google Scholar

  • Mancinelli, R. and Mckay, C. (1983). Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202.PubMedGoogle Scholar

  • Mann, M.S., Tiede, R., Gavenis, K., Daeschlein, G., Bussiahn, R., Weltmann, K.-D., Emmert, S., Woedtke, T.V., and Ahmed, R. (2016). Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin. Plasma Med. 4, 35–45.CrossrefGoogle Scholar

  • Marder, E.P., Griffin, P.M., Cieslak, P.R., Dunn, J., Hurd, S., Jervis, R., Lathrop, S., Muse, A., Ryan P., Smith, K., et al. (2018). Preliminary incidence and trends of infections with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 2006–2017. Weekly 67, 324–328.Google Scholar

  • Matsumoto, R., Shimizu, K., Nagashima, T., Tanaka, H., Mizuno, M., Kikkawa, F., Hori, M., and Honda, H. (2016). Plasma-activated medium selectively eliminates undifferentiated. Regen. Ther. 5, 55–63.CrossrefGoogle Scholar

  • Miyamoto, K., Ikehara, S., Takei, H., Akimoto, Y., Sakakita, H., Ishikawa, K., Ueda, M., Ikeda, J., Yamagishi, M., and Kim, J. (2016). Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 605, 95–101.CrossrefPubMedGoogle Scholar

  • Mohades, S., Laroussi, M., Sears, J., Barekzi, N., and Razavi, H. (2015). Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22, 122001.CrossrefGoogle Scholar

  • Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016a). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Plasma Process. Polym. 13, 12.Google Scholar

  • Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016b). Temporal evaluation of the anti-tumor efficiency of plasma-activated media. Plasma Process. Polym. 13, 1206.CrossrefGoogle Scholar

  • Mohades, S., Laroussi, M., and Maruthamuthu, V. (2017). Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells. J. Phys. D Appl. Phys. 50, 185205.CrossrefGoogle Scholar

  • Moreau, M., Orange, N., and Feuilloley, M.G. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26, 610–617.CrossrefPubMedGoogle Scholar

  • Morris, A.D., McCombs, G.B., Akan, T., Hynes, W., Laroussi, M., and Tolle, S.L. (2009). Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. J. Dent. Hyg. 83, 55–61.PubMedGoogle Scholar

  • Nagatsu, M., Terashita, F., Nonaka, H., Xu, L., Nagata, T., and Koide, Y. (2005). Effects of oxygen radicals in low-pressure surface wave plasma on sterilization. Appl. Phys. Lett. 86, 211502.CrossrefGoogle Scholar

  • Naim, A.H. (2015). Influence of pre-sowing treatment with hydrogen peroxide on alleviation salinity stress impacts on cow pea germination and early seedling development. Asian J. Plant Sci. 5, 62–67.Google Scholar

  • Naïtali, M., Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.-N., and Brisset, J.L. (2010). Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 76, 7662–7664.CrossrefPubMedGoogle Scholar

  • Nakamura, K., Peng, Y., Utsumi, F., Tanaka, H., Mizuno, M., Toyokuni, M., Hori, M., Kikkawa, F., and Kajiyama, H. (2017). Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci. Rep. 7, 6085.CrossrefPubMedGoogle Scholar

  • Narayanasamy, P. (2005). Postharvest Pathogens and Disease Management (Hoboken, USA: John Wiley & Sons Inc.).Google Scholar

  • Nikirov, A., Xiong, Q., Britun, N., Snyders, R., Lu, X., and Leys, C. (2011). Absolute concentration of OH radicals in atmospheric pressure glow discharges with a liquid electrode measured by laser-induced fluorescence spectroscopy. Appl. Phys. Express 4, 026102.CrossrefGoogle Scholar

  • Ninomiya, K., Ishijima, T., Imamura, M., Yamahara, T., Enomoto, H., Takahashi, K., Tanaka Y., Uesugi, Y., and Shimizu, N. (2013). Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet. J. Phys. D 46, 425401.CrossrefGoogle Scholar

  • Nofel, M., Chauvin, J., Vicendo, P., and Judée, F. (2017). Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801111055.Google Scholar

  • Norberg, S., Tian, W., Johnsen, E., and Kushner, M. (2014). Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. J. Phy. D: Appl. Phys. 47, 475203.CrossrefGoogle Scholar

  • Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., and Von-Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250–257.CrossrefGoogle Scholar

  • Oehmigen, K., Winter, J., Hahnel, M., Wilke, C., Brandenburg, R., Weltmann, K.D., and Von-Woedtke, T. (2011). Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process. Polym. 8, 904–913.CrossrefGoogle Scholar

  • Oh, J., Szili, E., Ogawa, K., Short, R., Ito, M., Furuta, M., and Hatta, A. (2018). UV–vis spectroscopy study of plasma-activated water: dependence of the chemical composition on plasma exposure time and treatment distance. Jpn. J. Appl. Phys. 57, 0102B9.CrossrefGoogle Scholar

  • Ouf, S.A., Mohamed, A.A.H., and El-Sayed, W.S. (2016). Fungal decontamination of fleshy fruit water washes by double atmospheric pressure cold plasma. Clean 44, 134–142.Google Scholar

  • Pan, J., Sun, K., Liang, Y.D., Sun, P., Yang, X.H., Wang, J., and Becker, K.H. (2013). Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 39, 105–110.PubMedCrossrefGoogle Scholar

  • Pan, J., Li, Y.L., Liu, C.M., Tian, Y., Yu, S., Wang, K.L., Zhang, J., and Fang, J. (2017). Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem. Plasma P. 37, 1091–1103.CrossrefGoogle Scholar

  • Pankaj, S.K., Bueno-Ferrer, C., Misra, N.N., Milosavljevic, V., O’Donnell, C.P., Bourke, P., and Cullen, P.J. (2014). Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 35, 5–17.CrossrefGoogle Scholar

  • Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Collins, G.J., and Lee, J.K. (2012). Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 21, 043001.CrossrefGoogle Scholar

  • Patel, R. (2005). Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437, 41–47.Google Scholar

  • Pei, X., Lu, Y., Wu, S., Xiong, Q., and Lu, X. (2013). A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser-induced fluorescence imaging. Plasma Sources Sci. Tech. 22, 025023.CrossrefGoogle Scholar

  • Peterson, P.E. (2003). World health report. Community Dent. Oral Epidemiol. 31, 3–24.Google Scholar

  • Raja Danasekaran, G.M. and Annadurai, K. (2014). Prevention of healthcare-associated infections: protecting patients, saving lives. Int. J. Community Med. Public Health 1, 67–68.CrossrefGoogle Scholar

  • Rehman, M.U., Jawaid, P., Uchiyama, H., and Kondo, T. (2016). Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch. Biochem. Biophys. 605, 19–25.CrossrefPubMedGoogle Scholar

  • Reuter, S., Niemi, K., Gathen, V., and Dobele, H. (2009). Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 18, 015006.CrossrefGoogle Scholar

  • Rumbach, P., Bartels, D.M., Sankaran, R.M., and Go, D.B. (2015). The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 6, 7248.PubMedCrossrefGoogle Scholar

  • Santos, D.M.F., Sequeira, C.A.C., and Figueiredo, J.L. (2013). Hydrogen production by alkaline water electrolysis. Quim. Nova. 36, 1176–1193.CrossrefGoogle Scholar

  • Sato, Y., Yamada, S., Takeda, S., Hattori, N., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., and Kodera, Y. (2018). Effect of plasma-activated lactated ringer’s solution on pancreatic cancer cells in vitro and in vivo. Ann. Surg. Oncol. 25, 299–307.PubMedCrossrefGoogle Scholar

  • Savary, S., Ficke, A., Aubertot, J.N., and Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4, 519–537.CrossrefGoogle Scholar

  • Shang, K., Li, J., Wang, X., Yao, D., Lu, N., Jiang, N., and Wu, Y. (2016). Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge. Jpn. J. Appl. Phys. 55, 01AB02.CrossrefGoogle Scholar

  • Shashurin, A., Keidar, M., Bronnikov, S., Jurjus, R., and Stepp, M. (2008). Living tissue under treatment of cold plasma atmospheric jet. Appl. Phys. Lett. 93, 181501.CrossrefGoogle Scholar

  • Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., and Fang, J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6, 28505.CrossrefGoogle Scholar

  • Shi, L., Yu, L., Zou, F., Hu, H., Liu, K., and Lin, Z. (2017). Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. Peer J. 5, e3751.CrossrefGoogle Scholar

  • Siddique, S.S., Hardy, G.E. St. J., and Bayliss, K.L. (2018). Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 10, 1–39.Google Scholar

  • Sivachandiran, L. and Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7, 1822–1832.CrossrefGoogle Scholar

  • Srivastava, N. and Wang, C. (2011). Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J. App. Phys. 110, 053304.CrossrefGoogle Scholar

  • Stewart, P.S. and Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.CrossrefPubMedGoogle Scholar

  • Su, X., Tian, Y., Zhou, H., Li, Y., Zhang, Z., Jiang, B., Yang, B., Zhang, J., and Fang, J. (2018). Inactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus. Appl. Environ. Microbiol. 84, e02836-17.Google Scholar

  • Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., and Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Process. Polym. 9, 157–164.CrossrefGoogle Scholar

  • Takaki, K., Takahata, J., Watanabe, S., Satta, N., Yamada, O., Fujio, T., and Sasaki, Y. (2013). Improvements in plant growth rate using underwater discharge. J. Phys. Conf. Ser. 418, 012140.CrossrefGoogle Scholar

  • Takeda, S., Yamada, S., Hattori, N., Nakamura, K., Tanaka, H., Kajiyama, H., Kanda, M., Kobayashi, D., Tanaka, C., Fujii, T, et al. (2017). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Ann. Surg. Oncol. 24, 1188–1194.CrossrefPubMedGoogle Scholar

  • Tanaka, H. (2012). Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2, 207–220.CrossrefGoogle Scholar

  • Tanaka, H., Mizuno, M., Ishikawa, K., Takeda, K., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., Okazaki, Y., Toyokuni, S., et al. (2014). Plasma medical science for cancer therapy: towards cancer therapy using nonthermal atmospheric plasma. IEEE Trans. Plasma Sci. 42, 3760.CrossrefGoogle Scholar

  • Tanaka, H., Mizuno, M., Toyokuni, S., Maruyama, S., Kodera, Y., Terasaki, H., Adachi, T., Kato, M., Kikkawa, F., and Hori, M. (2015a). Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Phys. Plasmas 22, 122003.Google Scholar

  • Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Takeda, K., Hashizume, H., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., et al. (2015b). Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 3, 71–76.Google Scholar

  • Tanaka, H., Nakamura, K., Mizuno, M., Ishikawa, K., Takeda, K., Kajiyama, H., Utsumi, F., Kikkawa, F., and Hori, M. (2016). Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 6, 36282.CrossrefPubMedGoogle Scholar

  • Thirumdas, R. (2018). Exploitation of cold plasma technology for enhancement of seed germination. Agri. Res. Tech. 13, 1–4.Google Scholar

  • Thiyagarajan, M., Sarani, A., and Nicula, C. (2013). Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications. J. Appl. Phys. 113, 233302.CrossrefGoogle Scholar

  • Toyokuni, S. (2016). The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66, 245–259.CrossrefPubMedGoogle Scholar

  • Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., and Graves, D.B. (2011). Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D Appl. Phys. 44, 472001.CrossrefGoogle Scholar

  • Tredwin, C., Naik, S., Lewis, N., and Scully, C. (2006). Hydrogen peroxide tooth-whitening (bleaching) products: review of adverse effects and safety issues. Br. Dent. J. 200, 371–376.CrossrefPubMedGoogle Scholar

  • Tresp, H., Hammer, M., Winter, J., Weltmann, K., and Reuter, S. (2013). Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J. Phys. D Appl. Phys. 46, 435401.CrossrefGoogle Scholar

  • Tripathi, P. and Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32, 235–245.CrossrefGoogle Scholar

  • Troyano, A., Sancho, P., Fernandez, C., Blas, E., Bernardi, P., and Aller, P. (2003). The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ. 10, 889–898.CrossrefPubMedGoogle Scholar

  • Tsutsui, C., Lee, M., Takahashi, G., Murata, S., Hirata, T., Kanai, T., and Mori, A. (2014). Treatment of cardiac disease by inhalation of atmospheric pressure plasma. Jpn. J. Appl. Phys. 53, 060309.CrossrefGoogle Scholar

  • Uchida, G., Nakajima, A., Ito, T., Takenaka, K., Kawasaki, T., Koga, K., Shiratani, M., and Setsuhara, Y. (2016). Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water. J. Appl. Phys. 120, 203302.CrossrefGoogle Scholar

  • Uchida, G., Takenaka, K., Takeda, K., Ishikawa, K., Hori, M., and Setsuhara, Y. (2017). Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet. Jpn. J. Appl. Phys. 57, 0102B4.Google Scholar

  • Ueda, M., Yamagami, D., Watanabe, K., Mori, A., Kimura, H., Sano, K., Saji, H., Ishikawa, K., Mori, M., Sakakita, H., et al. (2015). Histological and nuclear medical comparison of inflammation after hemostasis with non-thermal plasma and thermal coagulation. Plasma Process. Polym. 12, 1338–1342.CrossrefGoogle Scholar

  • Uhm, H. (2015). Generation of various radicals in nitrogen plasma and their behavior in media. Phys. Plasmas 22, 123506.CrossrefGoogle Scholar

  • United Nations, Department of Economic and Social Affairs, Population Division. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.Google Scholar

  • Utsumi, F., Kajiyama, H., Nakamura, K., Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Kano, H., Hori, M., and Kikkawa, F. (2013). Effect of indirect non-equilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8, e81576.CrossrefGoogle Scholar

  • Van-Gils, C.A.J., Hofmann, S., Boekema, B.K.H.L., Brandenburg, R., and Bruggeman, P.J. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 46, 1–14.Google Scholar

  • Verlackt, C., Boxem, W., and Bogaerts, A. (2018). Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys. 20, 6845–6859.CrossrefPubMedGoogle Scholar

  • Vlad, I.E. and Anghel, S.D. (2017). Time stability of water activated by different on-liquid atmospheric pressure plasmas. J. Electrostat. 87, 284–292.CrossrefGoogle Scholar

  • Vyhnankova, E., Kozakova, Z., Krcma, F., and Hrdlicka, A. (2014). Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge. Open Chem. 13, 218–223.Google Scholar

  • Wang, M., Holmes, B., Cheng, X., Zhu, W., Keidar, M., and Zhang, L.G. (2013). Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 8, e73741.CrossrefPubMedGoogle Scholar

  • Weller, R., Price, R.J., Ormerod, A.D., Benjamin, N., and Leifert, C. (2001). Microbial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol. 90, 648–652.CrossrefPubMedGoogle Scholar

  • Weltmann, K.-D. and von Woedtke, T. (2017). Plasma medicine – current state of research and medical application. Plasma Phys. Control. Fusion 59, 014031.CrossrefGoogle Scholar

  • Winter, J., Brandenburg, R., and Weltmann, K. (2015). Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol. 24, 064001.CrossrefGoogle Scholar

  • Xiang, J., Wan, C., Guo, R., and Guo, D. (2016). Is hydrogen peroxide a suitable apoptosis inducer for all cell types? BioMed. Res. Int. 2016, 7343965.PubMedGoogle Scholar

  • Xiong, Q., Yang, Z., and Bruggeman, P. (2015). Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy. J. Phys. D Appl. Phys. 48, 424008.CrossrefGoogle Scholar

  • Xu, Y., Tian, Y., Mab, R., Liu, Q., and Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 197, 436–444.PubMedCrossrefGoogle Scholar

  • Yan, D.Y., Sherman, J.H., Cheng X.Q., Ratovitski, E., Canady, J., and Keidar, M. (2014). Controlling plasma stimulated media in cancer treatment application. Appl. Phys. Lett. 105, 224101.CrossrefGoogle Scholar

  • Yan, D., Talbot, A., Nourmohammadi, N., Sherman, J.H., Cheng, X., and Keidar, M. (2015). Toward understanding the selective anticancer capacity of cold atmospheric plasma – a model based on aquaporins. Biointerphases 10, 040801.PubMedCrossrefGoogle Scholar

  • Yan, D., Cui, H., Zhu, W., Nourmohammadi, N., Milberg, J., Zhang, L.G., Sherman, J.H., and Keidar, M. (2017). The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 7, 4479.CrossrefPubMedGoogle Scholar

  • Ye, F., Kaneko, H., Nagasaka, Y., Ijima, R., Nakamura, K., Nagaya, M., Takayama, K., Kajiyama, H., Senga, T., Tanaka, H., et al. (2015). Plasma-activated medium suppresses choroidal neovascularization in mice: a new therapeutic concept for age-related macular degeneration. Sci. Rep. 5, 1–7.Google Scholar

  • Yousfi, M., Merbahi, N., Pathak, A., and Eichwald, O. (2014). Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol. 28, 123–135.PubMedCrossrefGoogle Scholar

  • Yue, Y., Pei, X., and Lu, X. (2016a). OH density optimization in atmospheric-pressure plasma jet by using multiple ring electrodes. J. Appl. Phys. 119, 033301.CrossrefGoogle Scholar

  • Yue, Y., Xian, Y., Pei, X., and Lu, X. (2016b). The effect of three different methods of adding O2 additive on O concentration of atmospheric pressure plasma jets (APPJs). Phys. Plasmas 23, 123503.CrossrefGoogle Scholar

  • Zhang, Q., Sun, P., Feng, H., Wang, R., Liang, L., Zhu, W., Becker, K., Zhang, J., and Fang, J. (2012). Assessment of the role of various inactivation agents in an argon based direct current atmospheric pressure cold plasma jet. J. Appl. Phys. 111, 123305.CrossrefGoogle Scholar

  • Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., and Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 102, 1–4.Google Scholar

  • Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., Zhang, J., and Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50, 3184–3192.CrossrefPubMedGoogle Scholar

  • Zhang, S., Rousseau, A., and Dufour, T. (2017). Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Adv. 7, 31244–31251.CrossrefGoogle Scholar

About the article

aNagendra Kumar Kaushik, Bhagirath Ghimire, Ying Li, Manish Adhikari, Mayura Veerana, Neha Kaushik and Nayansi Jha: These authors contributed equally to this work.

Received: 2018-04-18

Accepted: 2018-07-11

Published Online: 2018-07-24

Published in Print: 2018-12-19

Citation Information: Biological Chemistry, Volume 400, Issue 1, Pages 39–62, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0226.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in