Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 400, Issue 11


Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study

Dominique-Maurice Kehlenbeck
  • The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Inokentijs Josts
  • The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julius Nitsche
  • The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Busch
  • German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht, Lichtenbergstr. 1, 85747 Garching bei München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. Trevor Forsyth
  • Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
  • School of Life Sciences, Keele University, Staffordshire ST5 5BG, England
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henning TidowORCID iD: https://orcid.org/0000-0002-4702-9332
Published Online: 2019-06-19 | DOI: https://doi.org/10.1515/hsz-2019-0171


Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.

Keywords: integral membrane proteins; MsbA; nanodiscs; Salipro; saposin-lipoprotein particles


  • Arana, M.R., Fiori, M.C., and Altenberg, G.A. (2019). Functional and structural comparison of the ABC exporter MsbA studied in detergent and reconstituted in nanodiscs. Biochem. Biophys. Res. Commun. 512, 448–452.PubMedCrossrefGoogle Scholar

  • Autzen, H.E., Myasnikov, A.G., Campbell, M.G., Asarnow, D., Julius, D., and Cheng, Y. (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232.CrossrefGoogle Scholar

  • Baginski, E.S., Epstein, E., and Zak, B. (1975). Review of phosphate methodologies. Ann. Clin. Lab. Sci. 5, 399–416.PubMedGoogle Scholar

  • Barniol-Xicota, M. and Verhelst, S.H.L. (2018). Stable and functional rhomboid proteases in lipid nanodiscs by using diisobutylene/maleic acid copolymers. J. Am. Chem. Soc. 140, 14557–14561.PubMedCrossrefGoogle Scholar

  • Bayburt, T.H. and Sligar, S.G. (2010). Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721–1727.PubMedCrossrefGoogle Scholar

  • Bersch, B., Dorr, J.M., Hessel, A., Killian, J.A., and Schanda, P. (2017). Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native nanodiscs. Angew. Chem. Int. Ed. Engl. 56, 2508–2512.PubMedCrossrefGoogle Scholar

  • Bezanilla, F. (2008). How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 9, 323–332.PubMedCrossrefGoogle Scholar

  • Breyton, C., Gabel, F., Lethier, M., Flayhan, A., Durand, G., Jault, J.M., Juillan-Binard, C., Imbert, L., Moulin, M., Ravaud, S., et al. (2013). Small angle neutron scattering for the study of solubilised membrane proteins. Eur. Phys. J. E Soft. Matter. 36, 71.CrossrefGoogle Scholar

  • Broecker, J., Eger, B.T., and Ernst, O.P. (2017). Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25, 384–392.CrossrefPubMedGoogle Scholar

  • Champeil, P., Orlowski, S., Babin, S., Lund, S., le Maire, M., Moller, J., Lenoir, G., and Montigny, C. (2016). A robust method to screen detergents for membrane protein stabilization, revisited. Anal. Biochem. 511, 31–35.CrossrefPubMedGoogle Scholar

  • Chifflet, S., Torriglia, A., Chiesa, R., and Tolosa, S. (1988). A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1–4.PubMedCrossrefGoogle Scholar

  • Denisov, I.G. and Sligar, S.G. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486.PubMedCrossrefGoogle Scholar

  • Denisov, I.G., Grinkova, Y.V., Lazarides, A.A., and Sligar, S.G. (2004). Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487.PubMedCrossrefGoogle Scholar

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., and Wagner, G. (2013). Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401.CrossrefPubMedGoogle Scholar

  • Flayhan, A., Mertens, H.D.T., Ural-Blimke, Y., Martinez Molledo, M., Svergun, D.I., and Low, C. (2018). Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research. Structure 26, 345–355.PubMedCrossrefGoogle Scholar

  • Frauenfeld, J., Loving, R., Armache, J.P., Sonnen, A.F., Guettou, F., Moberg, P., Zhu, L., Jegerschold, C., Flayhan, A., Briggs, J.A., et al. (2016). A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351.PubMedCrossrefGoogle Scholar

  • Gattkowski, E., Johnsen, A., Bauche, A., Mockl, F., Kulow, F., Garcia Alai, M., Rutherford, T.J., Fliegert, R., and Tidow, H. (2019). Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. Biochim. Biophys. Acta: Mol. Cell Res. 1866, 1162–1170.PubMedCrossrefGoogle Scholar

  • Hagn, F., Etzkorn, M., Raschle, T., and Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925.PubMedCrossrefGoogle Scholar

  • Haswell, E.S., Phillips, R., and Rees, D.C. (2011). Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369.CrossrefGoogle Scholar

  • Hilger, D., Masureel, M., and Kobilka, B.K. (2018). Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12.CrossrefPubMedGoogle Scholar

  • Hu, Z., Ho, J.C.S., and Nallani, M. (2017). Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins. Curr. Opin. Biotechnol. 46, 51–56.CrossrefPubMedGoogle Scholar

  • Josts, I., Nitsche, J., Maric, S., Mertens, H.D., Moulin, M., Haertlein, M., Prevost, S., Svergun, D.I., Busch, S., Forsyth, V.T., et al. (2018). Conformational states of ABC transporter MsbA in a lipid environment investigated by small-angle scattering using stealth carrier nanodiscs. Structure 26, 1072–1079.CrossrefGoogle Scholar

  • Kawai, T., Caaveiro, J.M., Abe, R., Katagiri, T., and Tsumoto, K. (2011). Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett. 585, 3533–3537.CrossrefPubMedGoogle Scholar

  • Kiley, P., Zhao, X., Vaughn, M., Baldo, M.A., Bruce, B.D., and Zhang, S. (2005). Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol. 3, e230.PubMedCrossrefGoogle Scholar

  • Knowles, T.J., Finka, R., Smith, C., Lin, Y.P., Dafforn, T., and Overduin, M. (2009). Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485.PubMedCrossrefGoogle Scholar

  • Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., and Svergun, D.I. (2003). PRIMUS: a windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282.CrossrefGoogle Scholar

  • Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13, 89.PubMedCrossrefGoogle Scholar

  • Lee, S.C., Knowles, T.J., Postis, V.L., Jamshad, M., Parslow, R.A., Lin, Y.P., Goldman, A., Sridhar, P., Overduin, M., Muench, S.P., et al. (2016). A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat. Protoc. 11, 1149–1162.CrossrefPubMedGoogle Scholar

  • Lyons, J.A., Boggild, A., Nissen, P., and Frauenfeld, J. (2017). Saposin-lipoprotein scaffolds for structure determination of membrane transporters. Methods Enzymol. 594, 85–99.CrossrefPubMedGoogle Scholar

  • Miehling, J., Goricanec, D., and Hagn, F. (2018). A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins. ChemBioChem 19, 1927–1933.CrossrefPubMedGoogle Scholar

  • MLZ. (2015). SANS-1: small angle neutron scattering. J. Large-Scale Res. Facilities 1, A10.Google Scholar

  • Nasr, M.L., Baptista, D., Strauss, M., Sun, Z.J., Grigoriu, S., Huser, S., Pluckthun, A., Hagn, F., Walz, T., Hogle, J.M., et al. (2017). Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14, 49–52.CrossrefPubMedGoogle Scholar

  • Neumann, J., Rose-Sperling, D., and Hellmich, U.A. (2017). Diverse relations between ABC transporters and lipids: an overview. Biochim. Biophys. Acta Biomembr. 1859, 605–618.PubMedCrossrefGoogle Scholar

  • Newstead, S. (2017). Recent advances in understanding proton coupled peptide transport via the POT family. Curr. Opin. Struct. Biol. 45, 17–24.PubMedCrossrefGoogle Scholar

  • Nitsche, J., Josts, I., Heidemann, J., Mertens, H.D., Maric, S., Moulin, M., Haertlein, M., Busch, S., Forsyth, V.T., Svergun, D.I., et al. (2018). Structural basis for activation of plasma-membrane Ca(2+)-ATPase by calmodulin. Commun. Biol. 1, 206.CrossrefGoogle Scholar

  • Oluwole, A.O., Danielczak, B., Meister, A., Babalola, J.O., Vargas, C., and Keller, S. (2017a). Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew. Chem. Int. Ed. Engl. 56, 1919–1924.CrossrefGoogle Scholar

  • Oluwole, A.O., Klingler, J., Danielczak, B., Babalola, J.O., Vargas, C., Pabst, G., and Keller, S. (2017b). Formation of lipid-bilayer nanodiscs by diisobutylene/maleic acid (DIBMA) copolymer. Langmuir 33, 14378–14388.CrossrefGoogle Scholar

  • Overington, J.P., Al-Lazikani, B., and Hopkins, A.L. (2006). How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996.CrossrefPubMedGoogle Scholar

  • Palmgren, M.G. and Nissen, P. (2011). P-type ATPases. Annu. Rev. Biophys. 40, 243–266.CrossrefPubMedGoogle Scholar

  • Park, S.H., Berkamp, S., Cook, G.A., Chan, M.K., Viadiu, H., and Opella, S.J. (2011). Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50, 8983–8985.CrossrefPubMedGoogle Scholar

  • Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.L., and Champeil, P. (2006). Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45, 1861–1869.PubMedCrossrefGoogle Scholar

  • Popot, J.L., Berry, E.A., Charvolin, D., Creuzenet, C., Ebel, C., Engelman, D.M., Flotenmeyer, M., Giusti, F., Gohon, Y., Hong, Q., et al. (2003). Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60, 1559–1574.PubMedCrossrefGoogle Scholar

  • Raetz, C.R., Reynolds, C.M., Trent, M.S., and Bishop, R.E. (2007). Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329.CrossrefPubMedGoogle Scholar

  • Rask-Andersen, M., Almen, M.S., and Schioth, H.B. (2011). Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590.PubMedCrossrefGoogle Scholar

  • Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., and Sligar, S.G. (2009). Chapter 11 – reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231.CrossrefPubMedGoogle Scholar

  • Seddon, A.M., Curnow, P., and Booth, P.J. (2004). Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117.CrossrefPubMedGoogle Scholar

  • Sun, C., Benlekbir, S., Venkatakrishnan, P., Wang, Y., Hong, S., Hosler, J., Tajkhorshid, E., Rubinstein, J.L., and Gennis, R.B. (2018). Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557, 123–126.CrossrefGoogle Scholar

  • Svergun, D.I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503.CrossrefGoogle Scholar

  • Tribet, C., Audebert, R., and Popot, J.L. (1996). Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. U.S.A. 93, 15047–15050.CrossrefPubMedGoogle Scholar

  • Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.L., andWinnik, F.M. (2009). Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25, 12623–12634.PubMedCrossrefGoogle Scholar

  • Veith, K., Martinez Molledo, M., Almeida Hernandez, Y., Josts, I., Nitsche, J., Low, C., and Tidow, H. (2017). Lipid-like peptides can stabilize integral membrane proteins for biophysical and structural studies. ChemBioChem 18, 1735–1742.PubMedCrossrefGoogle Scholar

  • Wallin, E. and von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.PubMedGoogle Scholar

  • Wei, C.J., Xu, X., and Lo, C.W. (2004). Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20, 811–838.PubMedCrossrefGoogle Scholar

  • Yeh, J.I., Du, S., Tortajada, A., Paulo, J., and Zhang, S. (2005). Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44, 16912–16919.PubMedCrossrefGoogle Scholar

  • Zhao, X., Nagai, Y., Reeves, P.J., Kiley, P., Khorana, H.G., and Zhang, S. (2006). Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 103, 17707–17712.PubMedCrossrefGoogle Scholar

  • Zhou, Z., White, K.A., Polissi, A., Georgopoulos, C., and Raetz, C.R. (1998). Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273, 12466–12475.CrossrefPubMedGoogle Scholar

  • Zoonens, M. and Popot, J.L. (2014). Amphipols for each season. J. Membr. Biol. 247, 759–796.PubMedCrossrefGoogle Scholar

About the article

aInokentijs Josts and Julius Nitsche: These authors contributed equally to this work.

Received: 2019-02-26

Accepted: 2019-05-15

Published Online: 2019-06-19

Published in Print: 2019-11-26

Conflict of interest statement: The authors declare no competing financial interests.

Citation Information: Biological Chemistry, Volume 400, Issue 11, Pages 1509–1518, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2019-0171.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Inokentijs Josts, Yunyun Gao, Diana C.F. Monteiro, Stephan Niebling, Julius Nitsche, Katharina Veith, Tobias W. Gräwert, Clement E. Blanchet, Martin A. Schroer, Nils Huse, Arwen R. Pearson, Dmitri I. Svergun, and Henning Tidow
Structure, 2019
Janosch Hennig and Matthias J. Feige
Biological Chemistry, 2019, Volume 400, Number 11, Page 1395

Comments (0)

Please log in or register to comment.
Log in