Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 400, Issue 2

Issues

Advanced glycation endproducts and polysialylation affect the turnover of the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation endproducts (RAGE)

Franziska Frank
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronika Bezold
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kaya Bork
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philip Rosenstock
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonas Scheffler
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rüdiger Horstkorte
  • Corresponding author
  • Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-23 | DOI: https://doi.org/10.1515/hsz-2018-0291

Abstract

The balance between protein synthesis and degradation regulates the amount of expressed proteins. This protein turnover is usually quantified as the protein half-life time. Several studies suggest that protein degradation decreases with age and leads to increased deposits of damaged and non-functional proteins. Glycation is an age-dependent, non-enzymatic process leading to posttranslational modifications, so-called advanced glycation endproducts (AGE), which usually damage proteins and lead to protein aggregation. AGE are formed by the Maillard reaction, where carbonyls of carbohydrates or metabolites react with amino groups of proteins. In this study, we quantified the half-life time of two important receptors of the immunoglobulin superfamily, the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation end products (RAGE) before and after glycation. We found, that in two rat PC12 cell lines glycation leads to increased turnover, meaning that glycated, AGE-modified proteins are degraded faster than non-glycated proteins. NCAM is the most prominent carrier of a unique enzymatic posttranslational modification, the polysialylation. Using two PC12 cell lines (a non-polysialylated and a polysialylated one), we could additionally demonstrate, that polysialylation of NCAM has an impact on its turnover and that it significantly increases its half-life time.

Keywords: glycation; half-life time; NCAM; polysialic acid; RAGE

References

  • Ahmed, N., Battah, S., Karachalias, N., Babaei-Jadidi, R., Horányi, M., Baróti, K., Hollan, S., and Thornalley, P.J. (2003). Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochim. Biophys. Acta 1639, 121–132.CrossrefPubMedGoogle Scholar

  • Antecol, M.H., Darveau, A., Sonenberg, N., and Mukherjee, B.B. (1986). Altered biochemical properties of actin in normal skin fibroblasts from individuals predisposed to dominantly inherited cancers. Cancer Res. 46, 1867–1873.PubMedGoogle Scholar

  • Bennmann, D., Horstkorte, R., Hofmann, B., Jacobs, K., Navarrete-Santos, A., Simm, A., Bork, K., and Gnanapragassam, V.S. (2014). Advanced glycation endproducts interfere with adhesion and neurite outgrowth. PLoS One 9, e112115.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Bierhaus, A., Humpert, P.M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D.M., and Nawroth, P.P. (2005). Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 83, 876–886.CrossrefPubMedGoogle Scholar

  • Chiu, F.C. and Goldman, J.E. (1984). Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem. 42, 166–174.PubMedCrossrefGoogle Scholar

  • Cunningham, B.A., Hemperly, J.J., Murray, B.A., Prediger, E.A., Brackenbury, R., and Edelman, G.M. (1987). Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236, 799–806.PubMedCrossrefGoogle Scholar

  • Diestel, S., Schaefer, D., Cremer, H., and Schmitz, B. (2007). NCAM is ubiquitylated, endocytosed and recycled in neurons. J. Cell Sci. 120, 4035–4049.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Eckhardt, M., Mühlenhoff, M., Bethe, A., Koopman, J., Frosch, M., and Gerardy-Schahn, R. (1995). Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373, 715–718.PubMedCrossrefGoogle Scholar

  • Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983). Occurrence of α2-8 linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112, 482–487.CrossrefGoogle Scholar

  • Gasser, A. and Forbes, J.M. (2008). Advanced glycation: implications in tissue damage and disease. Protein Pept. Lett. 15, 385–391.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Gkogkolou, P. and Böhm, M. (2012). Advanced glycation end products. Dermatoendocrinology 4, 259–270.CrossrefGoogle Scholar

  • Hinsby, A.M., Berezin, V., and Bock, E. (2004). Molecular mechanisms of NCAM function. Front. Biosci. 9, 2227–2244.CrossrefPubMedGoogle Scholar

  • Horstkorte, R., Leßner, N., Gerardy-Schahn, R., Lucka, L., Danker, K., and Reutter, W. (1999). Expression of the polysialyltransferase ST8SiaIV: polysialylation interferes with adhesion of PC12 cells in vitro. Exp. Cell Res. 246, 122–128.CrossrefPubMedGoogle Scholar

  • John, W.G. and Lamb, E.J. (1993). The maillard or browning reaction in diabetes. Eye 7, 230–237.CrossrefPubMedGoogle Scholar

  • Kalapos, M.P. (2008). Methylglyoxal and glucose metabolism: a historical perspective and future avenues for research. Drug Metabol. Drug Interact. 23, 69–91.PubMedGoogle Scholar

  • Kao, S.H., Wang, W.L., Chen, C.Y., Chang, Y.L., Wu, Y.Y., Wang, Y.-T., Wang, S.-P., Nesvizhskii, A.I., Chen, Y.-J., Hong, T.-M., et al. (2015). Analysis of protein stability by the cyclohexemide chase assay. Bio-Protocl. 5.Google Scholar

  • Lapolla, A., Flamini, R., Vedova, A.D., Senesi, A., Reitano, R., Fedele, D., Basso, E., Seraglia, R., and Traldi, P. (2003). Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med. 41, 1166–1173.PubMedGoogle Scholar

  • Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B., and Fukuda, M. (1995). Expression cloning of a human polysialyltransferase that form polysialylated neural cell adhesion molecule present in embryonic brain. Proc. Natl. Acad. Sci. USA 92, 7031–7035.CrossrefGoogle Scholar

  • Park, T.U., Lucka, L., Reutter, W., and Horstkorte, R. (1997). Turnover studies of the neural cell adhesion molecule NCAM: degradation of NCAM in PC12 cells depends on the presence of NGF. Biochem. Biophys. Res. Commun. 234, 686–689.CrossrefPubMedGoogle Scholar

  • Schalkwijk, C.G. and Miyata, T. (2012). Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 42, 1193–1204.CrossrefWeb of SciencePubMedGoogle Scholar

  • Schmidt, A.M., Yan, S.D., Yan, S.F., and Stern, D.M. (2001). The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108, 949–955.PubMedCrossrefGoogle Scholar

  • Shafer, T.J. and Atchison, W.D. (1991). Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 12, 473–492.PubMedGoogle Scholar

  • Singh, R., Barden, A., Mori, T., and Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia 44, 129–146.PubMedCrossrefGoogle Scholar

  • Tauber, R., Park, C.S., and Reutter, W. (1983). Intramolecular heterogeneity of degradation in plasma membrane glycoproteins: evidence for a general characteristic. Proc. Natl. Acad. Sci. USA 80, 4026–4029.CrossrefGoogle Scholar

  • Thiery, J.P., Brackenbury, R., Rutishauser, U., and Edelman, G.M. (1977). Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252, 6841–6845.PubMedGoogle Scholar

  • Tischler, A.S. and Greene, L.A. (1978). Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab. Invest. 39, 77–89.PubMedGoogle Scholar

  • Vistoli, G., De Maddis, D., Cipak, A., Zarkovic, N., Carini, M., and Aldini, G. (2013). Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res. 47 (Supppl 1), 3–27.PubMedCrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-06-21

Accepted: 2018-08-09

Published Online: 2018-08-23

Published in Print: 2019-01-28


Citation Information: Biological Chemistry, Volume 400, Issue 2, Pages 219–226, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0291.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in