Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 400, Issue 9


In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis

Janina Laborenz
  • Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katja Hansen
  • Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Prescianotto-Baschong / Anne Spang / Johannes M. Herrmann
  • Corresponding author
  • Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-12 | DOI: https://doi.org/10.1515/hsz-2019-0196


Mitochondrial biogenesis relies on the synthesis of hundreds of different precursor proteins in the cytosol and their subsequent import into the organelle. Recent studies suggest that the surface of the endoplasmic reticulum (ER) actively contributes to the targeting of some mitochondrial precursors. In the past, in vitro import experiments with isolated mitochondria proved to be extremely powerful to elucidate the individual reactions of the mitochondrial import machinery. However, this in vitro approach is not well suited to study the influence of non-mitochondrial membranes. In this study, we describe an in vitro system using semi-intact yeast cells to test a potential import relevance of the ER proteins Erg3, Lcb5 and Ssh1, all being required for efficient mitochondrial respiration. We optimized the conditions of this experimental test system and found that cells lacking Ssh1, a paralog of the Sec61 translocation pore, show a reduced import efficiency of mitochondrial precursor proteins. Our results suggest that Ssh1, directly or indirectly, increases the efficiency of the biogenesis of mitochondrial proteins. Our findings are compatible with a functional interdependence of the mitochondrial and the ER protein translocation systems.

Keywords: endoplasmic reticulum; ER surf; mitochondria; protein import; Sec61; semi-intact cells


  • Backes, S. and Herrmann, J.M. (2017). Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front. Mol. Biosci. 4, 83.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Backes, S., Hess, S., Boos, F., Woellhaf, M.W., Godel, S., Jung, M., Muhlhaus, T., and Herrmann, J.M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Becker, T., Bhushan, S., Jarasch, A., Armache, J.P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Beckers, C.J., Keller, D.S., and Balch, W.E. (1987). Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50, 523–534.PubMedCrossrefGoogle Scholar

  • Beckers, C., Block, M., Glick, B., Rothman, J., and Balch, W. (1989). Vesicular transport between the ER and the Golgi stack requires the NEM-sensitive fusion protein. Nature 339, 397–398.CrossrefGoogle Scholar

  • Bonnefoy, N., Chalvet, F., Hamel, P., Slominski, P.P., and Dujardin, G. (1994). OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239, 201–212.CrossrefPubMedGoogle Scholar

  • Boos, F., Kramer, L., Groh, C., Jung, F., Haberkant, P., Stein, F., Wollweber, F., Gackstatter, A., Zoller, E., van der Laan, M., et al. (2019). Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21, 442–451.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Calvo, S.E., Julien, O., Clauser, K.R., Shen, H., Kamer, K.J., Wells, J.A., and Mootha, V.K. (2017). Comparative analysis of mitochondrial N-termini from mouse, human, and yeast. Mol. Cell. Proteomics 16, 512–523.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Chacinska, A., Lind, M., Frazier, A.E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H.E., Truscott, K.N., Guiard, B., et al. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.CrossrefPubMedGoogle Scholar

  • Cheng, Z., Jiang, Y., Mandon, E.C., and Gilmore, R. (2005). Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol. 168, 67–77.PubMedCrossrefGoogle Scholar

  • Costa, E.A., Subramanian, K., Nunnari, J., and Weissman, J.S. (2018). Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science 359, 689–692.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Daum, G., Gasser, S., and Schatz, G. (1982). Import of proteins into mitochondria: energy-dependent, two-step processing of the intermembrane space enzyme cytochrome b2 by isolated yeast mitochondria. J. Biol. Chem. 257, 13075–13080.PubMedGoogle Scholar

  • Finke, K., Plath, K., Panzner, S., Prehn, S., Rapoport, T.A., Hartmann, E., and Sommer, T. (1996). A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J. 15, 1482–1494.CrossrefPubMedGoogle Scholar

  • Fünfschilling, U. and Rospert, S. (1999). Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell. 10, 3289–3299.CrossrefPubMedGoogle Scholar

  • Gamerdinger, M., Hanebuth, M.A., Frickey, T., and Deuerling, E. (2015). The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348, 201–207.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Gasser, S.M., Daum, G., and Schatz, G. (1982). Import of proteins into mitochondria: energy-dependent uptake of precursors into isolated mitochondria. J. Biol. Chem. 257, 13034–13041.PubMedGoogle Scholar

  • Hansen, K.G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M., and Herrmann, J.M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361, 1118–1122.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Harty, C. and Romisch, K. (2013). Analysis of Sec61p and Ssh1p interactions in the ER membrane using the split-ubiquitin system. BMC Cell Biol. 14, 14.CrossrefWeb of SciencePubMedGoogle Scholar

  • Hoseini, H., Pandey, S., Jores, T., Schmitt, A., Franz-Wachtel, M., Macek, B., Buchner, J., Dimmer, K.S., and Rapaport, D. (2016). The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis and morphology. FEBS J. 283, 3338–3352.Web of ScienceCrossrefPubMedGoogle Scholar

  • Itakura, E., Zavodszky, E., Shao, S., Wohlever, M.L., Keenan, R.J., and Hegde, R.S. (2016). Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol. Cell 63, 21–33.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jan, C.H., Williams, C.C., and Weissman, J.S. (2014). Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jiang, Y., Cheng, Z., Mandon, E.C., and Gilmore, R. (2008). An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. J. Cell Biol. 180, 1149–1161.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jores, T., Lawatscheck, J., Beke, V., Franz-Wachtel, M., Yunoki, K., Fitzgerald, J.C., Macek, B., Endo, T., Kalbacher, H., Buchner, J., et al. (2018). Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. J Cell Biol. 217, 3091–3108.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kowalski, L., Bragoszewski, P., Khmelinskii, A., Glow, E., Knop, M., and Chacinska, A. (2018). Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins. BMC Biol. 16, 66.Web of SciencePubMedCrossrefGoogle Scholar

  • Merz, S. and Westermann, B. (2009). Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 10, R95.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Mootha, V.K., Bunkenborg, J., Olsen, J.V., Hjerrild, M., Wisniewski, J.R., Stahl, E., Bolouri, M.S., Ray, H.N., Sihag, S., Kamal, M., et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640.CrossrefPubMedGoogle Scholar

  • Morgenstern, M., Stiller, S.B., Lubbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weill, U., Hoss, P., Feuerstein, R., Gebert, M., et al. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Okamoto, K., Brinker, A., Paschen, S.A., Moarefi, I., Hayer-Hartl, M., Neupert, W., and Brunner, M. (2002). The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO J. 21, 3659–3671.PubMedCrossrefGoogle Scholar

  • Opalinski, L., Song, J., Priesnitz, C., Wenz, L.S., Oeljeklaus, S., Warscheid, B., Pfanner, N., and Becker, T. (2018). Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 25, 2036–2043.e2035.Web of SciencePubMedCrossrefGoogle Scholar

  • Papic, D., Elbaz-Alon, Y., Koerdt, S.N., Leopold, K., Worm, D., Jung, M., Schuldiner, M., and Rapaport, D. (2013). The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell Biol. 33, 4083–4094.Web of ScienceCrossrefPubMedGoogle Scholar

  • Peleh, V., Ramesh, A., and Herrmann, J.M. (2015). Import of proteins into isolated yeast mitochondria. Methods Mol. Biol. 1270, 37–50.CrossrefPubMedGoogle Scholar

  • Ponce-Rojas, J.C., Avendano-Monsalve, M.C., Yanez-Falcon, A.R., Jaimes-Miranda, F., Garay, E., Torres-Quiroz, F., DeLuna, A., and Funes, S. (2017). αβ′-NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. FEBS J. 284, 814–830.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Prescianotto-Baschong, C. and Riezman, H. (2002). Ordering of compartments in the yeast endocytic pathway. Traffic 3, 37–49.CrossrefPubMedGoogle Scholar

  • Ramesh, A., Peleh, V., Martinez-Caballero, S., Wollweber, F., Sommer, F., van der Laan, M., Schroda, M., Alexander, R.T., Campo, M.L., and Herrmann, J.M. (2016). A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. J. Cell Biol. 214, 417–431.CrossrefPubMedGoogle Scholar

  • Rhee, H.W., Zou, P., Udeshi, N.D., Martell, J.D., Mootha, V.K., Carr, S.A., and Ting, A.Y. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Schlenstedt, G., Hurt, E., Doye, V., and Silver, P.A. (1993). Reconstitution of nuclear protein transport with semi-intact yeast cells. J. Cell Biol. 123, 785–798.CrossrefPubMedGoogle Scholar

  • Shieh, H.L. and Chiang, H.L. (1998). In vitro reconstitution of glucose-induced targeting of fructose-1,6-bisphosphatase into the vacuole in semi-intact yeast cells. J. Biol. Chem. 273, 3381–3387.PubMedCrossrefGoogle Scholar

  • Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H.H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., et al. (2015). Molecular architecture of the active mitochondrial protein gate. Science 349, 1544–1548.Web of ScienceCrossrefPubMedGoogle Scholar

  • Spiller, M.P. and Stirling, C.J. (2011). Preferential targeting of a signal recognition particle-dependent precursor to the Ssh1p translocon in yeast. J. Biol. Chem. 286, 21953–21960.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Topf, U., Suppanz, I., Samluk, L., Wrobel, L., Boser, A., Sakowska, P., Knapp, B., Pietrzyk, M.K., Chacinska, A., and Warscheid, B. (2018). Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat. Commun. 9, 324.Web of SciencePubMedCrossrefGoogle Scholar

  • Verleur, N., Hettema, E.H., van Roermund, C.W., Tabak, H.F., and Wanders, R.J. (1997). Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur. J. Biochem. 249, 657–661.CrossrefGoogle Scholar

  • Vögtle, F.N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert, K., Kellermann, J., Voos, W., Sickmann, A., Pfanner, N., et al. (2009). Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439.CrossrefWeb of SciencePubMedGoogle Scholar

  • Weidberg, H. and Amon, A. (2018). MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science 360, pii: eaan4146.CrossrefWeb of ScienceGoogle Scholar

  • Wiedemann, N. and Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wilkinson, B.M., Tyson, J.R., and Stirling, C.J. (2001). Ssh1p determines the translocation and dislocation capacities of the yeast endoplasmic reticulum. Dev. Cell 1, 401–409.CrossrefPubMedGoogle Scholar

  • Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M.E., Oeljeklaus, S., Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., et al. (2015). Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 485–488.Web of ScienceCrossrefPubMedGoogle Scholar

  • Yamamoto, H., Itoh, N., Kawano, S., Yatsukawa, Y., Momose, T., Makio, T., Matsunaga, M., Yokota, M., Esaki, M., Shodai, T., et al. (2011). Dual role of the receptor Tom20 in specificity and efficiency of protein import into mitochondria. Proc. Natl. Acad. Sci. USA 108, 91–96.CrossrefWeb of ScienceGoogle Scholar

  • Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.PubMedCrossrefGoogle Scholar

  • Zimmermann, R. and Neupert, W. (1980). Transport of proteins to mitochondria: posttranslational transfer of ADP/ATP carrier into mitochondria. Eur. J. Biochem. 109, 217–229.PubMedCrossrefGoogle Scholar

About the article

aJanina Laborenz and Katja Hansen: These authors contributed equally to this work.

Received: 2019-03-21

Accepted: 2019-05-03

Published Online: 2019-06-12

Published in Print: 2019-08-27

Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: DIP MitoBalance

Award identifier / Grant number: IRTG1830

Award identifier / Grant number: HE2803/8-2

We thank Sabine Knaus for technical assistance and Sandra Backes for comments on the manuscript. This study was funded by grants of the Deutsche Forschungsgemeinschaft (Funder Id: http://dx.doi.org/ 10.13039/501100001659, DIP MitoBalance, Funder Id: http://dx.doi.org/10.13039/501100001659, IRTG1830, Funder Id: http://dx.doi.org/10.13039/501100001659, HE2803/8-2), the Forschungsinitiative Rheinland Pfalz and the University of Basel.

Citation Information: Biological Chemistry, Volume 400, Issue 9, Pages 1229–1240, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2019-0196.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in