Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

Online
ISSN
1437-4315
See all formats and pricing
More options …
Volume 398, Issue 4

Issues

The insect-derived antimicrobial peptide metchnikowin targets Fusarium graminearum β(1,3)glucanosyltransferase Gel1, which is required for the maintenance of cell wall integrity

Mohammad-Reza Bolouri Moghaddam
  • Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Vilcinskas
  • Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Rahnamaeian
  • Corresponding author
  • Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Strasse 2, D-35394 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-02 | DOI: https://doi.org/10.1515/hsz-2016-0295

Abstract

Antimicrobial peptides (AMPs) are essential components of the insect innate immune system. Their diversity provides protection against a broad spectrum of microbes and they have several distinct modes of action. Insect-derived AMPs are currently being developed for both medical and agricultural applications, and their expression in transgenic crops confers resistance against numerous plant pathogens. The antifungal peptide metchnikowin (Mtk), which was originally discovered in the fruit fly Drosophila melanogaster, is of particular interest because it has potent activity against economically important phytopathogenic fungi of the phylum Ascomycota, such as Fusarium graminearum, but it does not harm beneficial fungi such as the mycorrhizal basidiomycete Piriformospora indica. To investigate the specificity of Mtk, we used the peptide to screen a F. graminearum yeast two-hybrid library. This revealed that Mtk interacts with the fungal enzyme β(1,3)-glucanosyltransferase Gel1 (FgBGT), which is one of the enzymes responsible for fungal cell wall synthesis. The interaction was independently confirmed in a second interaction screen using mammalian cells. FgBGT is required for the viability of filamentous fungi by maintaining cell wall integrity. Our study therefore paves the way for further applications of Mtk in formulation of bio fungicides or as a supplement in food preservation.

Keywords: Fusarium graminearum; insect antimicrobial peptides; metchnikowin; β(1,3)-glucanosyltransferase

References

  • Al Souhail, Q., Hiromasa, Y., Rahnamaeian, M., Giraldo, MC., Takahashi, D., Valent, B., Vilcinskas, A., and Kanost, M. R. (2016). Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. Dev. Comp. Immunol. 61, 258–268.Google Scholar

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–402.Google Scholar

  • Anisimova, M. and Gascuel, O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552.Google Scholar

  • Beauvais, A., Bruneau, J. M., Mol, P. C., Buitrago, M. J., Legrand, R., and Latge, J. P. (2001). Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183, 2273–2279.Google Scholar

  • Bolouri Moghaddam, M. R., Vilcinskas, A., and Rahnamaeian, M. (2015). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Mol. Plant Pathol. 17, 464–71.Google Scholar

  • Bolouri Moghaddam, M. R., Tonk, M., Schreiber, C., Salzig, D., Czermak, P., Vilcinskas, A., and Rahnamaeian, M. (2016). The potential of the Galleria mellonella innate immune system is maximized by the co-presentation of diverse antimicrobial peptides. Biol. Chem. 397, 939–945.Google Scholar

  • Bowman, S. M. and Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays. 28, 799–808.Google Scholar

  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.Google Scholar

  • Cabezas-Cruz, A., Tonk, M., Bouchut, A., Pierrot, C., Pierce, R. J., Kotsyfakis, M., Rahnamaeian, M., Vilcinskas, A., Khalife, J., and Valdes, J. J. (2016). Antiplasmodial activity is an ancient and conserved feature of tick defensins. Front. Microbiol. 7, 1682.Google Scholar

  • Caracuel, Z., Martinez-Rocha, A. L., Di Pietro, A., Madrid, M. P., and Roncero, M. I. G. (2005). Fusarium oxysporum gas1 encodes a putative β-1,3-glucanosyltransferase required for virulence on tomato plants. Mol. Plant Microbe Interact. 18, 1140–1147.Google Scholar

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.Google Scholar

  • Chevenet, F., Brun, C., Banuls, A. L., Jacq, B., and Christen, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439.CrossrefGoogle Scholar

  • Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469.Google Scholar

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.Google Scholar

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321.Web of ScienceGoogle Scholar

  • Henrissat, B. and Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644.Google Scholar

  • Henrissat, B. and Davies, G. J. (2000). Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 124, 1515–1519.Google Scholar

  • Kamei, M., Yamashita, K., Takahashi, M., Fukumori, F., Ichiishi, A., and Fujimura, M. (2013). Deletion and expression analysis of β-(1,3)-glucanosyltransferase genes in Neurospora crassa. Fungal Genet. Biol. 52, 65–72.Google Scholar

  • Langen, G., Imani, J., Altincicek, B., Kieseritzky, G., Kogel, K. H., and Vilcinskas, A. (2006). Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol. Chem. 387, 549–557.Google Scholar

  • Langfelder, K., Jahn, B., Gehringer, H., Schmidt, A., Wanner, G., and Brakhage, A. A. (1998). Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol. 187, 79–89.Google Scholar

  • Levashina, E. A., Ohresser, S., Bulet, P., Reichhart, J. M., Hetru, C., and Hoffmann, J. A. (1995). Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694–700.Google Scholar

  • Liu, J. and Balasubramanian, M. K. (2001). 1,3-β-Glucan synthase: a useful target for antifungal drugs. Curr. Drug. Targets Infect. Disord. 1, 159–169.Google Scholar

  • Marchler-Bauer, A. and Bryant, S. H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331.Google Scholar

  • Marchler-Bauer, A., Zheng, C. J., Chitsaz, F., Derbyshire, M. K., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., et al. (2013). CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–D352.Google Scholar

  • Mazan, M., Ragni, E., Popolo, L., and Farkas, V. (2011). Catalytic properties of the Gas family β-(1,3)-glucanosyltransferases active in fungal cell-wall biogenesis as determined by a novel fluorescent assay. Biochem. J. 438, 275–282.Google Scholar

  • Moretti, A., Panzarini, G., Somma, S., Campagna, C., Ravaglia, S., Logrieco, A. F., and Solfrizzo, M. (2014). Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. Toxins (Basel) 6, 1308–1324. doi:10.3390/toxins6041308.CrossrefGoogle Scholar

  • Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W. A., Diaquin, M., Popolo, L., Hartland, R. P., and Latge, J. P. (2000). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882–14889.Google Scholar

  • Mylonakis, E., Podsiadlowski, L., Muhammed, M., and Vilcinskas, A. (2016). Diversity, evolution and medical applications of insect antimicrobial peptides. Phil. Trans. R. Soc. B 371, 20150290.Google Scholar

  • Pöppel, A. K., Koch, A., Kogel, K. H., Vogel, H., Kollewe, C., Wiesner, J., and Vilcinskas, A. (2014). Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol. Chem. 395, 649–656.Google Scholar

  • Rahnamaeian, M. and Vilcinskas, A. (2012). Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J. Plant Res. 125, 115–124.Google Scholar

  • Rahnamaeian, M. and Vilcinskas, A. (2015). Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl. Microbiol. Biotechnol. 99, 8847–8855.Google Scholar

  • Rahnamaeian, M., Cytrynska, M., Zdybicka-Barabas, A., and Vilcinskas, A. (2016). The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation. Peptides 78, 17–23.Google Scholar

  • Rahnamaeian, M., Langen, G., Imani, J., Khalifa, W., Altincicek, B., von Wettstein, D., Kogel, K. H., and Vilcinskas, A. (2009). Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J. Exp. Bot. 60, 4105–4114.Google Scholar

  • Samalova, M., Mélida, H., Vilaplana, F., Bulone, V., Soanes, D. M., Talbot, N. J., and Gurr, S. J. (2016). The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell. Microbiol. doi: 10.1111/cmi.12659.CrossrefGoogle Scholar

  • Sheehan, D. J., Hitchcock, C. A., and Sibley, C. M. (1999). Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 12, 40–79.Google Scholar

  • Tonk, M., Cabezas-Cruz, A., Valdes, J. J., Rego, R. O. M., Chrudimska, T., Strnad, M., Sima, R., Bell-Sakyi, L., Franta, Z., Vilcinskas, A., et al. (2014). Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasit. Vectors 7, 554.Google Scholar

  • Tonk, M., Vilcinskas, A., and Rahnamaeian, M. (2016). Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol. 100, 7397–7405.Google Scholar

  • Vilcinskas, A. and Gross, J. (2005). Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J. Pest Sci. 78, 187–191.Google Scholar

  • Yurlova, L., Derks, M., Buchfellner, A., Hickson, I., Janssen, M., Morrison, D., Stansfield, I., Brown, C. J., Ghadessy, F. J., Lane, D. P., et al. (2014). The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: targeting the interaction of p53 with Mdm2 and Mdm4. J. Biomol. Screen. 19, 516–525.Web of ScienceGoogle Scholar

  • Zolghadr, K., Mortusewicz, O., Rothbauer, U., Kleinhans, R., Goehler, H., Wanker, E. E., Cardoso, M. C., and Leonhardt, H. (2008). A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol. Cell. Proteomics 7, 2279–2287.Google Scholar

About the article

Received: 2016-09-21

Accepted: 2016-10-28

Published Online: 2016-11-02

Published in Print: 2017-04-01


Conflict of interest statement: The authors declare there is no conflict of interest.


Citation Information: Biological Chemistry, Volume 398, Issue 4, Pages 491–498, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2016-0295.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Mohammad-Reza Bolouri Moghaddam, Thomas Gross, Annette Becker, Andreas Vilcinskas, and Mohammad Rahnamaeian
Scientific Reports, 2017, Volume 7, Number 1

Comments (0)

Please log in or register to comment.
Log in