Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 399, Issue 4


LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells

Ming Sun
  • Department of Urology, China Medical University Affiliated Shengjing Hospital, Shenyang 110004, Liaoning, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Donghua Geng
  • Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shuqiang Li
  • Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhaofu Chen
  • Department of Urology, China Medical University Affiliated Shengjing Hospital, Shenyang 110004, Liaoning, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenyan Zhao
  • Corresponding author
  • Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-20 | DOI: https://doi.org/10.1515/hsz-2017-0255


We investigated thoroughly the effect of lncRNA PART1 on prostate cancer cells proliferation and apoptosis, through regulating toll-like receptor (TLR) pathways. LncRNA PART1 expression was also examined by quantitative real-time polymerase chain reactions (qRT-PCR) in human tissues and the cells lines LNCaP and PC3. After transfection with si-PART1 or control constructs, the cell viability was measured by MTS and colony formation assays. In addition, the apoptosis rate of the prostate cancer cells was validated by TUNEL staining. Relationships between lncRNA PART1 expression and TLR pathway genes were demonstrated by qRT-PCR and Western blotting. High levels of lncRNA PART1 expression were correlated with advanced cancer stage and predication of poor survival. LncRNA PART1 levels was increased in PCa cells treated with 5α-dihydrotestosterone (DHT), confirming PART1 was directly induced by androgen. Moreover, down-regulation of lncRNA PART1 inhibited prostate cancer cell proliferation and accelerated cell apoptosis. In addition, lncRNA PART1 induced downstream genes expression in TLR pathways including TLR3, TNFSF10 and CXCL13 to further influence prostate cancer cells, indicating its carcinogenesis on prostate cancer. LncRNA PART1 promoted cell proliferation ability and apoptosis via the inhibition of TLR pathways in prostate cancer. LncRNA PART1 could hence be considered as a new target in the treatment of prostate cancer.

This article offers supplementary material which is provided at the end of the article.

Keywords: lncRNA PART1; prostate cancer; toll-like receptor pathway


  • Bi, M., Yu, H., Huang, B., and Tang, C. (2017). Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in gastric cancer cells through regulating CDKN1A. Gene 626, 337–343.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Chen, C.D., Welsbie, D.S., Tran, C., Baek, S.H., Chen, R., Vessella, R., Rosenfeld, M.G., and Sawyers, C.L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39.CrossrefPubMedGoogle Scholar

  • Farooqi, A.A., Bhatti, S., and Ismail, M. (2012a). TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int. 12, 22.Web of ScienceCrossrefGoogle Scholar

  • Farooqi, A.A., Rana, A., Riaz, A.M., Khan, A., Ali, M., Javed, S., Mukhtar, S., Minhaj, S., Rao, J.R., Rajpoot, J., et al. (2012b). NutriTRAILomics in prostate cancer: time to have two strings to one’s bow. Mol. Biol. Rep. 39, 4909–4914.CrossrefWeb of ScienceGoogle Scholar

  • Galli, R., Starace, D., Busa, R., Angelini, D.F., Paone, A., De Cesaris, P., Filippini, A., Sette, C., Battistini, L., Ziparo, E., et al. (2010). TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J. Immunol. 184, 6658–6669.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Gan, S.S., Ye, J.Q., Wang, L., Qu, F.J., Chu, C.M., Tian, Y.J., Yang, W., and Cui, X.G. (2017). Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. Onco. Targets Ther. 10, 2139–2146.CrossrefPubMedGoogle Scholar

  • Gonzalez-Reyes, S., Fernandez, J.M., Gonzalez, L.O., Aguirre, A., Suarez, A., Gonzalez, J.M., Escaff, S., and Vizoso, F.J. (2011). Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol. Immunother. 60, 217–226.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Hou, J., Aerts, J., den Hamer, B., van Ijcken, W., den Bakker, M., Riegman, P., van der Leest, C., van der Spek, P., Foekens, J.A., Hoogsteden, H.C., et al. (2010). Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 5, e10312.Web of SciencePubMedCrossrefGoogle Scholar

  • Lemos, A.E., Ferreira, L.B., Batoreu, N.M., de Freitas, P.P., Bonamino, M.H., and Gimba, E.R. (2016). PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol. 37, 11339–11348.PubMedCrossrefGoogle Scholar

  • Li, J., Yang, S., Su, N., Wang, Y., Yu, J., Qiu, H., He, X. (2016). Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/beta-catenin pathway in human ovarian cancer. Tumour Biol. 37, 2057–2065.PubMedCrossrefGoogle Scholar

  • Lin, B., White, J.T., Ferguson, C., Bumgarner, R., Friedman, C., Trask, B., Ellis ,W., Lange, P., Hood, L., and Nelson, P.S. (2000). PART-1: a novel human prostate-specific, androgen-regulated gene that maps to chromosome 5q12. Cancer Res. 60, 858–863.PubMedGoogle Scholar

  • Luo, G., Wang, M., Wu, X., Tao, D., Xiao, X., Wang, L., Min, F., Zeng, F., and Jiang, G. (2015). Long non-coding RNA MEG3 inhibits cell proliferation and induces apoptosis in prostate cancer. Cell Physiol. Biochem. 37, 2209–2220.Web of SciencePubMedCrossrefGoogle Scholar

  • Misawa, A., Takayama, K., Urano, T., and Inoue, S. (2016). Androgen-induced long noncoding RNA (lncRNA) SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. J. Biol. Chem. 291, 17861–17880.CrossrefWeb of SciencePubMedGoogle Scholar

  • Misawa, A., Takayama, K.I., Fujimura, T., Homma, Y., Suzuki, Y., and Inoue, S. (2017). Androgen-induced lncRNA POTEF-AS1 regulates apoptosis-related pathway to facilitate cell survival in prostate cancer cells. Cancer Sci. 108, 373–379.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Prensner, J.R., Rubin, M.A., Wei, J.T., and Chinnaiyan, A.M. (2012). Beyond PSA: the next generation of prostate cancer biomarkers. Sci. Transl. Med. 4, 127rv123.Web of ScienceGoogle Scholar

  • Prensner, J.R., Iyer, M.K., Sahu, A., Asangani, I.A., Cao, Q., Patel, L., Vergara, I.A., Davicioni, E., Erho, N., Ghadessi, M., et al. (2013). The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398.Web of ScienceCrossrefGoogle Scholar

  • Sidiropoulos, M., Chang, A., Jung, K., and Diamandis, E.P. (2001). Expression and regulation of prostate androgen regulated transcript-1 (PART-1) and identification of differential expression in prostatic cancer. Br. J. Cancer. 85, 393–397.CrossrefPubMedGoogle Scholar

  • Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335–376.CrossrefPubMedGoogle Scholar

  • Thomas, A.A., Pearce, A., Sharp, L., Gardiner, R.A., Chambers, S., Aitken, J., Molcho, M., and Baade, P. (2017). Socioeconomic disadvantage but not remoteness affects short-term survival in prostate cancer: a population-based study using competing risks. Asia Pac. J. Clin. Oncol. 13, e31–e40.Google Scholar

  • Tosetti, V., Sassone, J., Ferri, A.L.M., Taiana, M., Bedini, G., Nava, S., Brenna, G., Di Resta, C., Pareyson, D., Di Giulio, A.M., et al. (2017). Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis. PLoS One 12, e0180579.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Waltering, K.K., Helenius, M.A., Sahu, B., Manni, V., Linja, M.J., Janne, O.A., and Visakorpi, T. (2009). Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 69, 8141–8149.Web of SciencePubMedCrossrefGoogle Scholar

  • Wang, H., Gao, X., Lu, X., Wang, Y., Ma, C., Shi, Z., Zhu, F., He, B., Xu, C., and Sun, Y. (2015). The mitotic regulator Hec1 is a critical modulator of prostate cancer through the long non-coding RNA BX647187 in vitro. Biosci Rep. 35, e00273.Web of ScienceCrossrefGoogle Scholar

  • Wang, X., Ruan, Y., Wang, X., Zhao, W., Jiang, Q., Jiang, C., Zhao, Y., Xu, Y., Sun, F., Zhu, Y., et al. (2017). Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif. 50.PubMedWeb of ScienceGoogle Scholar

  • Yu, L., Blackburn, G.L., and Zhou, J.R. (2003). Genistein and daidzein downregulate prostate androgen-regulated transcript-1 (PART-1) gene expression induced by dihydrotestosterone in human prostate LNCaP cancer cells. J. Nutr. 133, 389–392.CrossrefPubMedGoogle Scholar

  • Zhang, Y., Su, X., Kong, Z., Fu, F., Zhang, P., Wang, D., Wu, H., Wan, X., and Li, Y. (2017). An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation. PLoS One 12, e0182305.CrossrefWeb of SciencePubMedGoogle Scholar

  • Zhao, S., Zhang, Y., Zhang, Q., Wang, F., and Zhang, D. (2014). Toll-like receptors and prostate cancer. Front. Immunol. 5, 352.Web of SciencePubMedGoogle Scholar

About the article

Received: 2017-09-29

Accepted: 2017-12-01

Published Online: 2017-12-20

Published in Print: 2018-03-28

Citation Information: Biological Chemistry, Volume 399, Issue 4, Pages 387–395, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2017-0255.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Min Kang, Meiping Ren, Yan Li, Yuqiong Fu, Minmin Deng, and Changping Li
Journal of Experimental & Clinical Cancer Research, 2018, Volume 37, Number 1
Ruanmin Zou, Xiangjian Chen, Xuejing Jin, Shi Li, Rongying Ou, Jisen Xue, Xiaojian Yan, Lulu Chen, Yan Hu, and Hua Zhu
Surgical Oncology, 2018, Volume 27, Number 2, Page 306

Comments (0)

Please log in or register to comment.
Log in