Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 400, Issue 5


The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity

Darja KanducORCID iD: https://orcid.org/0000-0003-2111-4608
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/hsz-2018-0271


Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.

Keywords: autoimmunity; crossreactivity; human proteome; peptide sharing; sequence similarity; viral proteomes


  • Almansa, R., Heredia-Rodríguez, M., Gomez-Sanchez, E., Andaluz-Ojeda, D., Iglesias, V., Rico, L., Ortega, A., Gomez-Pesquera, E., Liu, P., Aragón, M., et al. (2015). Transcriptomic correlates of organ failure extent in sepsis. J. Infect. 70, 445–456.CrossrefPubMedGoogle Scholar

  • Arboleda, V.A., Lee, H., Dorrani, N., Zadeh, N., Willis, M., Macmurdo, C.F., Manning, M.A., Kwan, A., Hudgins, L., Barthelemy, F., et al. (2015). De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am. J. Hum. Genet. 96, 498–506.CrossrefGoogle Scholar

  • Assrir, N., Filhol, O., Galisson, F., and Lipinski, M. (2007). HIRIP3 is a nuclear phosphoprotein interacting with and phosphorylated by the serine-threonine kinase CK2. Biol. Chem. 388, 391–398.PubMedGoogle Scholar

  • Aziz, A., Harrop, S.P., and Bishop, N.E. (2011). Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders. PLoS One 6, e14547.CrossrefPubMedGoogle Scholar

  • Bachelot, A., Gilleron, J., Meduri, G., Guberto, M., Dulon, J., Boucherie, S., Touraine, P., and Misrahi, M. (2018). A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int. J. Mol. Med. 41, 640–648.Google Scholar

  • Bareja, A., Hodgkinson, C.P., Payne, A.J., Pratt, R.E., and Dzau, V.J. (2017). HASF (C3orf58) is a novel ligand of the insulin-like growth factor 1 receptor. Biochem. J. 474, 771–780.CrossrefPubMedGoogle Scholar

  • Beigi, F., Schmeckpeper, J., Pow-Anpongkul, P., Payne, J.A., Zhang, L., Zhang, Z., Huang, J., Mirotsou, M., and Dzau, V.J. (2013). C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ. Res. 113, 372–380.CrossrefPubMedGoogle Scholar

  • Bell, P.J. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J. Mol. Evol. 53, 251–256.PubMedCrossrefGoogle Scholar

  • Bell, P.J. (2006). Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. J. Theor. Biol. 243, 54–63.CrossrefPubMedGoogle Scholar

  • Bell, P.J. (2009). The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann. N. Y. Acad. Sci. 1178, 91–105.CrossrefPubMedGoogle Scholar

  • Bell, P. (2013). Meiosis: its origin according to the viral eukaryogenesis theory. In: Meiosis. C. Bernstein and H. Bernstein, eds. (London: InTech), pp. 77–97.Google Scholar

  • Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 knockout mice are viable. Curr. Biol. 13, 1775–1785.CrossrefPubMedGoogle Scholar

  • Ceneri, N., Zhao, L., Young, B.D., Healy, A., Coskun, S., Vasavada, H., Yarovinsky, T.O., Ike, K., Pardi, R., Qin, L., et al. (2017). Rac2 modulates atherosclerotic calcification by regulating macrophage interleukin-1β production. Arterioscler. Thromb. Vasc. Biol. 37, 328–340.CrossrefPubMedGoogle Scholar

  • Chan, H.C.S., McCarthy, D., Li, J., Palczewski, K., and Yuan, S. (2017). Designing safer analgesics via μ-opioid receptor pathways. Trends Pharmacol. Sci. 38, 1016–1037.CrossrefPubMedGoogle Scholar

  • Chen, C., Li, Z., Huang, H., Suzek, B.E., Wu, CH., and UniProt Consortium. (2013). A fast peptide match service for UniProt Knowledgebase. Bioinformatics 29, 2808–2809.PubMedCrossrefGoogle Scholar

  • Chen, P.W., Jian, X., Heisslerm, S.M., Le, K., Luo, R., Jenkins, L.M., Nagy, A., Moss, J., Sellers, J.R., and Randazzo, P.A. (2016). The Arf GTPase-activating protein, ASAP1, binds nonmuscle myosin 2A to control remodeling of the actomyosin network. J. Biol. Chem. 291, 7517–7526.PubMedCrossrefGoogle Scholar

  • Crambert, G. and Geering, K. (2003). FXYD proteins: new tissue-specific regulators of the ubiquitous Na,K-ATPase. Sci STKE. 2003, RE1.PubMedGoogle Scholar

  • Cui, Z., Zhao, M.H., Jia, X.Y., Wang, M., Hu, S.Y., Wang, S.X., Yu, F., Brown, K.L., Hudson, B.G., and Pedchenko, V. (2016). Antibodies to α5 chain of collagen IV are pathogenic in Goodpasture’s disease. J. Autoimmun. 70, 1–11.PubMedCrossrefGoogle Scholar

  • Deguchi, K., Ayton, P.M., Carapeti, M., Kutok, J.L., Snyder, C.S., Williams, I.R., Cross, N.C., Glass, C.K., Cleary, M.L., and Gilliland, D.G. (2003). MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271.CrossrefPubMedGoogle Scholar

  • Deshpande, A.M., Akunowicz, J.D., Reveles, X.T., Patel, B.B., Saria, E.A., Gorlick, R.G., Naylor, S.L., Leach, R.J., and Hansen, M.F. (2007). PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene 26, 1714–1722.CrossrefPubMedGoogle Scholar

  • Dong, T., He, J., Wang, S., Wang, L., Cheng, Y., and Zhong, Y. (2016). Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proc. Natl. Acad. Sci. USA 113, 7644–7649.CrossrefGoogle Scholar

  • Durzyńska, J. and Goździcka-Józefiak, A. (2015). Viruses and cells intertwined since the dawn of evolution. Virol. J. 12, 169.PubMedCrossrefGoogle Scholar

  • Forterre, P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16.PubMedCrossrefGoogle Scholar

  • Frank, A. (2002). Immunology and Evolution of Infectious Disease (Princeton, NJ: Princeton University Press).Google Scholar

  • Gopinathan, L., Tan, S.L., Padmakumar, V.C., Coppola, V., Tessarollo, L., and Kaldis, P. (2014). Loss of Cdk2 and cyclin A2 impairs cell proliferation and tumorigenesis. Cancer Res. 74, 3870–3879.PubMedCrossrefGoogle Scholar

  • Gorman, K.M., Meyer, E., and Kurian, M.A. (2018). Review of the phenotype of early-onset generalised progressive dystonia due to mutations in KMT2B. Eur. J. Paediatr. Neurol. 22, 245–256.PubMedCrossrefGoogle Scholar

  • Gulden, P.H., Fischer, P., 3rd, Sherman, N.E., Wang, W., Engelhard, V.H., Shabanowitz, J., Hunt, D.F., and Pamer, E.G. (1996). A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2-M3 MHC class Ib molecule. Immunity 5, 73–79.PubMedCrossrefGoogle Scholar

  • Guo, S., Chen, W., Yang, Y., Yang, Z., and Cao, M. (2014). Association between 1019C/T polymorphism in the connexin 37 gene and essential hypertension. Heart Lung Circ. 23, 924–929.CrossrefPubMedGoogle Scholar

  • Han, X.R., Zha, Z., Yuan, H.X., Feng, X., Xia, Y.K., Lei, Q.Y., Guan, K.L., and Xiong, Y. (2016). KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene 35, 4179–4190.CrossrefPubMedGoogle Scholar

  • Hanson, D., Murray, P.G., Sud, A., Temtamy, S.A., Aglan, M., Superti-Furga, A., Holder, S.E., Urquhart, J., Hilton, E., Manson, F.D., et al. (2009). The primordial growth disorder 3-M syndrome connects ubiquitination to the cytoskeletal adaptor OBSL1. Am. J. Hum. Genet. 84, 801–806.PubMedCrossrefGoogle Scholar

  • He, P., Sun, L., Zhu, D., Zhang, H., Zhang, L., Guo, Y., Liu, S., Zhou, J., Xu, X., and Xie, P. (2016). Knock-down of endogenous Bornavirus-Like Nucleoprotein 1 inhibits cell growth and induces apoptosis in human oligodendroglia cells. Int. J. Mol. Sci. 17, 435.CrossrefPubMedGoogle Scholar

  • Heise, C.J., Xu, B.E., Deaton, S.L., Cha, S.K., Cheng, C.J., Earnest, S., Sengupta, S., Juang, Y.C., Stippec, S., Xu, Y., et al. (2010). Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J. Biol. Chem. 285, 25161–25167.CrossrefPubMedGoogle Scholar

  • Horie, M. (2017). The biological significance of borna virus-derived genes in mammals. Curr. Opin. Virol. 25, 1–6.CrossrefGoogle Scholar

  • Horie, M., Kobayashi, Y., Suzuki, Y., and Tomonaga, K. (2013). Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120499.PubMedCrossrefGoogle Scholar

  • Howard, S.R., Guasti, L., Ruiz-Babot, G., Mancini, A., David, A., Storr, H.L., Sternberg, M.J., Cabrera, C.P., Warren H.R., Barnes, M.R., et al. (2016). IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol. Med. 8, 626–642.PubMedCrossrefGoogle Scholar

  • Iossa, D., Molaro, R., Andini, R., Parrella, A., Ursi, M.P., Mattucci, I., De Vincentiis, L., Dialetto, G., Utili, R., and Durante-Mangoni, E. (2016). Clinical significance of hyperhomocysteinemia in infective endocarditis: A case-control study. Medicine (Baltimore) 95, e4972.CrossrefPubMedGoogle Scholar

  • Izawa, D. and Pines, J. (2011). How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat. Cell. Biol. 13, 223–233.CrossrefPubMedGoogle Scholar

  • Jakubowski, H., Boers, G.H., and Strauss, K.A. (2008). Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J. 22, 4071–4076.CrossrefPubMedGoogle Scholar

  • Juang, J.M., Lu, T.P., Lai, L.C., Ho, C.C., Liu, Y.B., Tsai, C.T., Lin, L.Y., Yu, C.C., Chen, W.J., Chiang, F.T., et al. (2014). Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci. Rep. 4, 6733.PubMedGoogle Scholar

  • Kanduc, D. (2009). “Self-nonself” peptides in the design of vaccines. Curr. Pharm. Des. 15, 3283–3289.CrossrefPubMedGoogle Scholar

  • Kanduc, D. (2010a). Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes. Biologics 4, 245–261.Google Scholar

  • Kanduc, D. (2010b). Protein information content resides in rare peptide segments. Peptides 31, 983–988.CrossrefGoogle Scholar

  • Kanduc, D. (2010c). The self/nonself issue: a confrontation between proteomes. Self Nonself 1, 255–258.CrossrefGoogle Scholar

  • Kanduc, D. (2011). Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J. Exp. Ther. Oncol. 9, 159–165.PubMedGoogle Scholar

  • Kanduc, D. (2012a). Peptide cross-reactivity: the original sin of vaccines. Front. Biosci. 4, 1393–1401.Google Scholar

  • Kanduc, D. (2012b). Homology, similarity, and identity in peptide epitope immunodefinition. J. Pept. Sci. 18, 487–494.CrossrefGoogle Scholar

  • Kanduc, D. (2013). Pentapeptides as minimal functional units in cell biology and immunology. Curr. Protein Pept. Sci. 14, 111–120.CrossrefPubMedGoogle Scholar

  • Kanduc, D. (2018). Epstein-Barr virus, immunodeficiency, and cancer: a potential crossreactivity connection. Intern. Med. Rev. 4, 1–17.Google Scholar

  • Kanduc, D. and Shoenfeld, Y. (2018). Inter-pathogen peptide sharing and the original antigenic sin: Solving a paradox. Open Immunol, J. 8, 11–27.Google Scholar

  • Kanduc, D., Fanizzi, F.P., Lucchese, G., Stevanovic, S., Sinha, A.A., and Mittelman, A. (2004). NMR probing of in silico identification of anti-HPV16 E7 mAb linear peptide epitope. Peptides 25, 243–250.PubMedCrossrefGoogle Scholar

  • Kanduc, D., Lucchese, A., and Mittelman, A. (2007). Non-redundant peptidomes from DAPs: towards “the vaccine”? Autoimmun. Rev. 6, 290–294.PubMedCrossrefGoogle Scholar

  • Kanduc, D., Serpico, R., Lucchese, A., and Shoenfeld, Y. (2008a). Correlating low-similarity peptide sequences and HIV B-cell epitopes. Autoimmun. Rev. 7, 291–296.CrossrefGoogle Scholar

  • Kanduc, D., Tessitore, L., Lucchese, G., Kusalik, A., Farber, E., and Marincola, F.M. (2008b). Sequence uniqueness and sequence variability as modulating factors of human anti-HCV humoral immune response. Cancer Immunol. Immunother. 57, 1215–1223.CrossrefGoogle Scholar

  • Kanduc, D., Stufano, A., Lucchese, G., and Kusalik, A. (2008c). Massive peptide sharing between viral and human proteomes. Peptides 29, 1755–1766.CrossrefGoogle Scholar

  • Karrman, K., Isaksson, M., Paulsson, K., and Johansson, B. (2011). The insulin receptor substrate 4 gene (IRS4) is mutated in paediatric T-cell acute lymphoblastic leukaemia. Br. J. Haematol. 155, 516–519.CrossrefPubMedGoogle Scholar

  • Kehrer-Sawatzki, H., Wilda, M., Braun, V.M., Richter, H.P., and Hameister, H. (2002). Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol. 104, 231–240.PubMedGoogle Scholar

  • Kelly, P.J., Furie, K.L., Kistler, J.P., Barron, M., Picard, E.H., Mandell, R., and Shih, V.E. (2003). Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase deficiency. Neurology 60, 275–279.PubMedCrossrefGoogle Scholar

  • Kerimoglu, C., Agis-Balboa, R.C., Kranz, A., Stilling, R., Bahari-Javan, S., Benito-Garagorri, E., Halder, R., Burkhardt, S., Stewart, A.F., and Fischer, A. (2013). Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J. Neurosci. 33, 3452–3464.PubMedCrossrefGoogle Scholar

  • Khateb, S., Zelinger, L., Mizrahi-Meissonnier, L., Ayuso, C., Koenekoop, R.K., Laxer, U., Gross, M., Banin, E., and Sharon, D. (2014). A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J. Med. Genet. 51, 460–469.CrossrefPubMedGoogle Scholar

  • Kishimoto, J., Fukuma, Y., Mizuno, A., and Nemoto, T.K. (2005). Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Cell Stress Chaperones 10, 296–311.CrossrefPubMedGoogle Scholar

  • Ko, J.A., Kimura, Y., Matsuura, K., Yamamoto, H., Gondo, T., and Inui, M. (2006). PDZRN3 (LNX3, SEMCAP3) is required for the differentiation of C2C12 myoblasts into myotubes. J. Cell. Sci. 119, 5106–5113.CrossrefPubMedGoogle Scholar

  • Koonin, E.V. and Dolja, V.V. (2013). A virocentric perspective on the evolution of life. Curr. Opin. Virol. 3, 546–557.CrossrefPubMedGoogle Scholar

  • Koonin, E.V., Dolja, V.V., and Krupovic, M. (2015). Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 479–480, 2–25.PubMedGoogle Scholar

  • Kumar, V., Mack, D.R., Marcil, V., Israel, D., Krupoves, A., Costea, I., Lambrette, P., Grimard, G., Dong, J., Seidman, E.G., et al. (2013). Genome-wide association study signal at the 12q12 locus for Crohn’s disease may represent associations with the MUC19 gene. Inflamm. Bowel Dis. 19, 1254–1259.PubMedCrossrefGoogle Scholar

  • Labonne, J.D., Lee, K.H., Iwase, S., Kong, I.K., Diamond, M.P., Layman, L.C., Kim, C.H., and Kim, H.G. (2016). An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. Hum. Genet. 135, 757–771.CrossrefGoogle Scholar

  • Lazcano, A. and Peretó, J. (2017). On the origin of mitosing cells: a historical appraisal of Lynn Margulis Endosymbiotic Theory. J. Theor. Biol. 434, 80–87.CrossrefGoogle Scholar

  • Li, X., Lim, J., Lu, J., Pedego, T.M., Demer, L., and Tintut, Y. (2015). Protective role of Smad6 in inflammation-induced valvular cell calcification. J. Cell. Biochem. 116, 2354–2364.PubMedCrossrefGoogle Scholar

  • Li, Z., Wang, D., Gu, Y., Song, S., He, M., Shi, J., Liu, X., Wei, S., Li, J., Yu, H., et al. (2017). Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus. MBio. 8, e00787–17.PubMedGoogle Scholar

  • Liebisch, M., Bondeva, T., Franke, S., Hause, S., and Wolf, G. (2017). Growth arrest specific 2-like protein 1 expression is upregulated in podocytes through advanced glycation end-products. Nephrol. Dial. Transplant 32, 641–653.PubMedGoogle Scholar

  • Lu, Z., Je, H.S., Young, P., Gross, J., Lu, B., and Feng, G. (2007). Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. J. Cell Biol. 177, 1077–1089.CrossrefPubMedGoogle Scholar

  • Lucchese, G. and Kanduc, D. (2016). Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun. Rev. 15, 801–808.CrossrefPubMedGoogle Scholar

  • Lucchese, A., Serpico, R., Crincoli, V., Shoenfeld, Y, and Kanduc, D. (2009a). Sequence uniqueness as a molecular signature of HIV-1-derived B-cell epitopes. Int. J. Immunopathol. Pharmacol. 22, 639–646.CrossrefGoogle Scholar

  • Lucchese, G., Stufano, A., and Kanduc, D. (2009b). Proteome-guided search for influenza A B-cell epitopes. FEMS Immunol. Med. Microbiol. 57, 88–92.CrossrefGoogle Scholar

  • Lucchese, G., Stufano, A., and Kanduc, D. (2010). Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J. Biomed. Biotechnol. 2010, 832341.PubMedGoogle Scholar

  • Lucchese, G., Stufano, A., Calabró, M., and Kanduc, D. (2011). Charting the peptide crossreactome between HIV-1 and the human proteome. Front. Biosci. 3, 1385–1400.Google Scholar

  • Lucchese, G., Calabró, M., and Kanduc, D. (2012a). Circumscribing the conformational peptide epitope landscape. Curr. Pharm. Des. 18, 832–839.CrossrefGoogle Scholar

  • Lucchese, G., Sinha, A.A., and Kanduc, D. (2012b). How a single amino acid change may alter the immunological information of a peptide. Front. Biosci. 4, 1843–1452.Google Scholar

  • Lucchese, G., Capone, G., and Kanduc, D. (2014). Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. Schizophr. Bull. 40, 362–375.CrossrefPubMedGoogle Scholar

  • Mahale, R.R., Mehta, A., Rau, T., Acharya, P., and Srinivasa, R. (2017). Arterial stroke as an isolated manifestation of homocystinuria in an infant. J. Pediatr. Neurosci. 12, 206–207.CrossrefGoogle Scholar

  • Margulis, L. (2010). Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). Paleontol. J. 44, 1525–1539.CrossrefGoogle Scholar

  • Matsumoto, Y., Hayashi, T., Inagaki, N., Takahashi, M., Hiroi, S., Nakamura, T., Arimura, T., Nakamura, K., Ashizawa, N., Yasunami, M., et al. (2005). Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J. Muscle Res. Cell. Motil. 26, 367–374.PubMedGoogle Scholar

  • Mazaheri, A., Mostofizadeh, N., and Hashemipour, M. (2017). Homocystinuria with stroke and positive familial history. Adv. Biomed. Res. 6, 132.CrossrefPubMedGoogle Scholar

  • Moon, B.S., Bai, J., Cai, M., Liu, C., Shi, J., and Lu, W. (2018). Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis. Nat. Commun. 9, 401.PubMedCrossrefGoogle Scholar

  • Morgan, N.V., Westaway, S.K., Morton, J.E., Gregory, A., Gissen, P., Sonek, S., Cangul, H., Coryell, J., Canham, N., Nardocci, N., et al. (2006). PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38, 752–754.PubMedCrossrefGoogle Scholar

  • Morrow, E.M., Yoo, S.Y., Flavell, S.W., Kim, T.K., Lin, Y., Hill, R.S., Mukaddes, N.M., Balkhy, S., Gascon, G., Hashmi, A., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223.PubMedCrossrefGoogle Scholar

  • Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa-Tanaka, K., Kuroda, T., Oie, S., Daitoku, H., Okuwaki, M., Nagata, K., et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627–639.PubMedCrossrefGoogle Scholar

  • Nakamura, S., Tan, L., Nagata, Y., Takemura, T., Asahina, A., Yokota, D., Yagyu, T., Shibata, K., Fujisawa, S., and Ohnishi, K. (2013). JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia. Mol. Carcinog. 52, 57–69.PubMedCrossrefGoogle Scholar

  • Niman, H.L., Houghten, R.A., Walker, L.E., Reisfeld, R.A., Wilson, I.A., Hogle, J.M., and Lerner, R.A. (1983). Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA 80, 4949–4953.CrossrefGoogle Scholar

  • Novello, G., Capone, G., and Kanduc, D. (2012). Reviewing the role of peptide rarity in bacterial toxin immunomics. Front. Biosci. 4, 216–225.Google Scholar

  • Oldstone, M.B. (1998). Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265.CrossrefPubMedGoogle Scholar

  • Parnetti, L., Caso, V., Amici, S., Lanari, A., Gallai, V., and Bottiglieri, T. (2002). Hyperhomocyst(e)inemia: a risk factor for cerebrovascular disease. Clin. Exp. Hypertens. 24, 501–509.CrossrefGoogle Scholar

  • Plewnia, G., Schulze, K., Hunte, C., Tampé, R., and Koch, J. (2007). Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1. J. Mol. Biol. 369, 95–107.PubMedCrossrefGoogle Scholar

  • Polimeno, L., Mittelman, A., Gennero, L., Ponzetto, A., Lucchese, G., Stufano, A., Kusalik, A., and Kanduc, D. (2008). Sub-epitopic dissection of HCV E1315-328HRMAWDMMMNWSPT sequence by similarity analysis. Amino Acids 34, 479–484.CrossrefPubMedGoogle Scholar

  • Polito, A., Polimeno, R., and Kanduc, D. (2017). Peptide sharing between Parvovirus B19 and DNA methylating/histone modifying enzymes: a potential link to childhood acute lymphoblastic leukemia. Int. J. Pediatr. Child Health 5: 29–39.Google Scholar

  • Puertas Mdel, C., Martínez-Martos, J.M., Cobo, M., Lorite, P., Sandalio, R.M., Palomeque, T., Torres, M.I., Carrera-González, M.P., Mayas, M.D., and Ramírez-Expósito, M.J. (2013). Plasma renin-angiotensin system-regulating aminopeptidase activities are modified in early stage Alzheimer’s disease and show gender differences but are not related to apolipoprotein E genotype. Exp. Gerontol. 48, 557–564.PubMedCrossrefGoogle Scholar

  • Ranawaka, U.K., Alibhoy, A.T., and Wijesekera, J.C. (2001). Three young patients with unusual causes of stroke. Ceylon Med. J. 46, 17–18.PubMedGoogle Scholar

  • Raychaudhuri, S., Sandor, C., Stahl, E.A., Freudenberg, J., Lee, H.S., Jia, X., Alfredsson, L., Padyukov, L., Klareskog, L., Worthington, J., et al. (2012). Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296.CrossrefPubMedGoogle Scholar

  • Reddehase, M.J., Rothbard, J.B., and Koszinowski, U.H. (1989). A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337, 651–653.CrossrefPubMedGoogle Scholar

  • Ricco, R. and Kanduc, D. (2010). Hepatitis B virus and Homo sapiens proteome-wide analysis: a profusion of viral peptide overlaps in neuron-specific human proteins. Biologics 4, 75–81.PubMedGoogle Scholar

  • Robinson, J.W., Leshchyns’ka, I., Farghaian, H., Hughes, W.E., Sytnyk, V., Neely, G.G., and Cole, A.R. (2014). PI4KIIα phosphorylation by GSK3 directs vesicular trafficking to lysosomes. Biochem. J. 464, 145–156.PubMedCrossrefGoogle Scholar

  • Rosales-Aviña J.A., Torres-Flores J., Aguilar-Lemarroy A., Gurrola-Díaz C., Hernández-Flores G., Ortiz-Lazareno P.C., Lerma-Díaz, J.M., de Celis, R., González-Ramella, Ó., Barrera-Chaires, E., et al. (2011). MEIS1, PREP1, and PBX4 are differentially expressed in acute lymphoblastic leukemia: association of MEIS1 expression with higher proliferation and chemotherapy resistance. J. Exp. Clin. Cancer Res. 30, 112.PubMedCrossrefGoogle Scholar

  • Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F., and Kimura, A. (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262, 411–417.CrossrefPubMedGoogle Scholar

  • Schindelhauer, D., Weiss, M., Hellebrand, H., Golla, A., Hergersberg, M., Seger, R., Belohradsky, B.H., and Meindl, A. (1996). Wiskott-Aldrich syndrome: no strict genotype-phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product. Hum. Genet. 98, 68–76.PubMedCrossrefGoogle Scholar

  • Schneider, J., Skelton, R.L., Von Stetina, S.E., Middelkoop, T.C., van Oudenaarden, A., Korswagen, H.C., and Miller, D.M. 3rd. (2012). UNC-4 antagonizes Wnt signaling to regulate synaptic choice in the C. elegans motor circuit. Development 139, 2234–2245.CrossrefGoogle Scholar

  • Schubert, S., Knoch, K.P., Ouwendijk, J., Mohammed, S., Bodrov, Y., Jäger, M., Altkrüger, A., Wegbrod, C., Adams, M.E., Kim, Y., et al. (2010). β2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PLoS One 5, e12929.CrossrefPubMedGoogle Scholar

  • Seto, E., Yoshida-Sugitani, R., Kobayashi, T., and Toyama-Sorimachi, N. (2015). The assembly of EDC4 and Dcp1a into processing bodies is critical for the translational regulation of IL-6. PLoS One 10, e0123223.CrossrefPubMedGoogle Scholar

  • Sewduth, R.N., Jaspard-Vinassa, B., Peghaire, C., Guillabert, A., Franzl, N., Larrieu-Lahargue, F., Moreau, C., Fruttiger, M., Dufourcq, P., Couffinhal, T., et al. (2014). The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat. Commun. 5, 4832.CrossrefPubMedGoogle Scholar

  • Sheikhvatan, M., Boroumand, M., Behmanesh, M., Abbasi, S.H., Davoodi, G., Ziaee, S., and Cheraghi, S. (2017). C1019T polymorphism in the connexin 37 gene and myocardial infarction risk in premature coronary artery disease. J. Tehran Heart. Cent. 12, 72–81.PubMedGoogle Scholar

  • Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.PubMedGoogle Scholar

  • Simon, D.B., Karet, F.E., Hamdan, J.M., DiPietro, A., Sanjad, S.A., and Lifton, R.P. (1996). Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat. Genet. 13, 183–188.CrossrefPubMedGoogle Scholar

  • Siow, S.F. and Kumar, K.R. (2017). New gene implicated in early-onset generalized dystonia, Lysine-specific methyltransferase 2B (KMT2B). Mov. Disord. 32, 395.CrossrefPubMedGoogle Scholar

  • Somogyi, P., Dalezios, Y., Luján, R., Roberts, J.D., Watanabe, M., and Shigemoto, R. (2003). High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur. J. Neurosci. 17, 2503–2520.PubMedCrossrefGoogle Scholar

  • Steinberg, S., Stefansson, H., Jonsson, T., Johannsdottir, H., Ingason, A., Helgason, H., Sulem, P., Magnusson, O.T., Gudjonsson, S.A., Unnsteinsdottir, U., et al. (2015). Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat. Genet. 47, 445–447.PubMedCrossrefGoogle Scholar

  • Stojanov, S., Lapidus, S., Chitkara, P., Feder, H., Salazar, J.C., Fleisher, T.A., Brown, M.R., Edwards, K.M., Ward, M.M., Colbert, R.A., et al. (2011). Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc. Natl. Acad. Sci. USA 108, 7148–7153.CrossrefGoogle Scholar

  • Stufano, A. and Kanduc, D. (2009). Proteome-based epitopic peptide scanning along PSA. Exp. Mol. Pathol. 86, 36–40.PubMedCrossrefGoogle Scholar

  • Stufano, A., Capone, G., Pesetti, B., Polimeno, L., and Kanduc, D. (2010). Clustering of rare peptide segments in the HCV immunome. Self Nonself 1, 154–162.CrossrefPubMedGoogle Scholar

  • Sun, Z., Ke, X., Salzberg, S.L., Kim, D., Antonescu, V., Cheng, Y., Huang, B., Song, J.H., Abraham, J.M., Ibrahim, S., et al. (2017). The novel fusion transcript NR5A2-KLHL29FT is generated by an insertion at the KLHL29 locus. Cancer 123, 1507–1515.PubMedCrossrefGoogle Scholar

  • Tanabe, S. (2007). Epitope peptides and immunotherapy. Curr. Protein Pept. Sci. 8, 109–118.CrossrefPubMedGoogle Scholar

  • The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–169.PubMedGoogle Scholar

  • Thullier, P., Avril, A., Mathieu, J., Behrens, C.K., Pellequer, J.L., and Pelat, T. (2013). Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor. PLoS One 8, e65855.PubMedCrossrefGoogle Scholar

  • Tiwari, R., Geliebter, J., Lucchese, A., Mittelman, A., and Kanduc, D. (2004). Computational peptide dissection of Melan-a/MART-1 oncoprotein antigenicity. Peptides 25, 1865–1871.CrossrefPubMedGoogle Scholar

  • Tompkins, V.S., Hagen, J., Frazier, A.A., Lushnikova, T., Fitzgerald, M.P., di Tommaso, A., Ladeveze, V., Domann, F.E., Eischen, C.M., and Quelle, D.E. (2007). A novel nuclear interactor of ARF and MDM2 (NIAM) that maintains chromosomal stability. J. Biol. Chem. 282, 1322–1333.CrossrefPubMedGoogle Scholar

  • Tong, C., Chen, N., Liao, X., Xie, W., Li, D., Li, X., and Fang, W. (2015). The epitope recognized by monoclonal antibody 2B6 in the B/C domains of classical Swine Fever Virus glycoprotein E2 affects viral binding to hyperimmune sera and replication. J. Microbiol. Biotechnol. 25, 537–546.CrossrefGoogle Scholar

  • van Wijk, S.J., de Vries, S.J., Kemmeren, P., Huang, A., Boelens, R., Bonvin, A.M., and Timmers, H.T. (2009). A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol. Syst. Biol. 5, 295.PubMedGoogle Scholar

  • Villarreal, L.P. and DeFilippis, V.R. (2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J. Virol. 74, 7079–7084.PubMedCrossrefGoogle Scholar

  • Villarreal, L.P. and Witzany, G. (2010). Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 262, 698–710.CrossrefPubMedGoogle Scholar

  • Vita, R., Overton, J.A., Greenbaum, J.A., Ponomarenko, J., Clark, J.D., Cantrell, J.R., Wheeler, D.K., Gabbard, J.L., Hix, D., Sette, A., et al. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–412.CrossrefPubMedGoogle Scholar

  • Wilson, F.H., Disse-Nicodème, S., Choate, K.A., Ishikawa, K., Nelson-Williams, C., Desitter, I., Gunel, M., Milford, D.V., Lipkin, G.W., Achard, J.M., et al. (2001). Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112.CrossrefPubMedGoogle Scholar

  • Wrzesiński, T., Szelag, M., Cieślikowski, W.A., Ida, A., Giles, R., Zodro, E., Szumska, J., Poźniak, J., Kwias, Z., Bluyssen, H.A., and Wesoly, J. (2015). Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 15, 518.PubMedCrossrefGoogle Scholar

  • Yang, Y. and Pan, C. (2013). Role of metabotropic glutamate receptor 7 in autism spectrum disorders: a pilot study. Life Sci. 92, 149–153.PubMedCrossrefGoogle Scholar

  • Yuan, B.Z., Miller, M.J., Keck, C.L., Zimonjic, D.B., Thorgeirsson, S.S., and Popescu, N.C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 58, 2196–2199.PubMedGoogle Scholar

  • Zagury, J.F., Bernard, J., Achour, A., Astgen, A., Lachgar, A., Fall, L., Carelli, C., Issing, W., Mbika, J.P., Cantalloube, H., et al. (1993). HIV-1-induced immune suppression may result from autoimmune disorders including anti-SLWDQ autoantibodies. Biomed. Pharmacother. 47, 93–99.PubMedCrossrefGoogle Scholar

  • Zeitz, C., Jacobson, S.G., Hamel, C.P., Bujakowska, K., Neuillé, M., Orhan, E., Zanlonghi, X., Lancelot, M.E., Michiels, C., Schwartz, S.B., et al. (2013). Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 92, 67–75.PubMedCrossrefGoogle Scholar

  • Zeng, W., Pagnon, J., and Jackson, D.C. (2007). The C-terminal pentapeptide of LHRH is a dominant B cell epitope with antigenic and biological function. Mol. Immunol. 44, 3724–3731.CrossrefPubMedGoogle Scholar

  • Zhao, L., Li, Y., Wu, D., Ma, T., Xia, S.Y., and Liu, Z. (2014). Cx37 C1019T polymorphism may contribute to the pathogenesis of coronary heart disease. Genet. Test Mol. Biomarkers 18, 497–504.PubMedCrossrefGoogle Scholar

  • Zhao, W., Rasheed, A., Tikkanen, E., Lee, J.J., Butterworth, A.S., Howson, J.M.M., Assimes, T.L., Chowdhury, R., Orho-Melander, M., Damrauer, S., et al. (2017). Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457.PubMedCrossrefGoogle Scholar

  • Zhou, L., Li, J., Zhao, Y.P., Cui, Q.C., Zhou, W.X., Guo, J.C., You, L., Wu, W.M., and Zhang, T.P. (2014). The prognostic value of Cyclin B1 in pancreatic cancer. Med. Oncol. 31, 107.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-06-01

Accepted: 2018-11-07

Published Online: 2018-12-03

Published in Print: 2019-04-24

Conflict of interest statement: None to declare.

Citation Information: Biological Chemistry, Volume 400, Issue 5, Pages 629–638, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0271.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in