Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Ahead of print


Kinetically selective and potent inhibitors of HDAC8

Markus Schweipert
  • Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstr. 7, 64295 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niklas Jänsch
  • Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstr. 7, 64295 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wisely Oki Sugiarto
  • Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstr. 7, 64295 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franz-Josef Meyer-Almes
  • Corresponding author
  • Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstr. 7, 64295 Darmstadt, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-22 | DOI: https://doi.org/10.1515/hsz-2018-0363


Histone deacetylase 8 (HDAC8) is an established and validated target for T-cell lymphoma and childhood neuroblastoma. The active site binding pocket of HDAC8 is highly conserved among all zinc-containing representatives of the histone deacetylase (HDAC) family. This explains that most HDACs are unselectively recognized by similar inhibitors featuring a zinc binding group (ZBG), a hydrophobic linker and a head group. In the light of this difficulty, the creation of isoenzyme-selectivity is one of the major challenges in the development of HDAC inhibitors. In a series of trifluoromethylketone inhibitors of HDAC8 compound 10 shows a distinct binding mechanism and a dramatically increased residence time (RT) providing kinetic selectivity against HDAC4. Combining the binding kinetics results with computational docking and binding site flexibility analysis suggests that 10 occupies the conserved catalytic site as well as an adjacent transient sub-pocket of HDAC8.

This article offers supplementary material which is provided at the end of the article.

Keywords: histone deacetylase; residence time; transient binding pocket


  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans Automatic Control 19, 716–723.CrossrefGoogle Scholar

  • Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E., and Buggy, J. J. (2008). A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026–1034.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Bradshaw, J.M., McFarland, J.M., Paavilainen, V.O., Bisconte, A., Tam, D., Phan, V.T., Romanov, S., Finkle, D., Shu, J., Patel, V., et al. (2015). Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11, 525–531.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Copeland, R.A., Pompliano, D.L., and Meek, T.D. (2006). Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739.PubMedCrossrefGoogle Scholar

  • Corbeil, C. R., Williams, C. I. and Labute, P. (2012). Variability in docking success rates due to dataset preparation. J. Comput. Aided. Mol. Des. 26, 775–786.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Decroos, C., Clausen, D.J., Haines, B.E., Wiest, O., Williams, R.M., and Christianson, D.W. (2015). Variable active site loop conformations accommodate the binding of macrocyclic largazole analogues to HDAC8. Biochemistry 54, 2126–2135.Web of ScienceCrossrefPubMedGoogle Scholar

  • Deschamps, N., Simões-Pires, C.A., Carrupt, P.-A., and Nurisso, A. (2015). How the flexibility of human histone deacetylases influences ligand binding: an overview. Drug Discov. Today 20, 736–742.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Dowling, D.P., Gantt, S.L., Gattis, S.G., Fierke, C.A., and Christianson, D.W. (2008). Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry 47, 13554–13563.CrossrefWeb of SciencePubMedGoogle Scholar

  • Fenichel, M.P. (2015). FDA approves new agent for multiple myeloma. J. Natl. Cancer Inst. 107, djv165. doi: 10.1093/jnci/djv165.CrossrefPubMedGoogle Scholar

  • Finnin, M.S., Donigian, J.R., Cohen, A., Richon, V.M., Rifkind, R.A., Marks, P.A., Breslow, R., and Pavletich, N.P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193.CrossrefPubMedGoogle Scholar

  • Frey, R.R., Wada, C.K., Garland, R.B., Curtin, M.L., Michealides, M.R., Li, J., Pease, L.J., Glaser, K.B., Marcotte, P.A., Bouska, J.J., et al. (2002). Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 12, 3443–3447.CrossrefPubMedGoogle Scholar

  • Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006). COPASI – a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.PubMedCrossrefGoogle Scholar

  • Huang, W.J., Wang, Y.C., Chao, S.W., Yang, C.Y., Chen, L.C., Lin, M.H., Hou, W.C., Chen, M.Y., Lee, T.L., Yang, P., et al. (2012). Synthesis and biological evaluation of ortho-aryl N-hydroxycinnamides as potent histone deacetylase (HDAC) 8 isoform-selective inhibitors. Chem. Med. Chem. 7, 1815–1824.CrossrefGoogle Scholar

  • Jänsch, N., Meyners, C., Muth, M., Kopranovic, A., Witt, O., Oehme, I., and Meyer-Almes, F.-J. (2019). The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biol. 20, 60–67.CrossrefPubMedGoogle Scholar

  • Kleinschek, A., Meyners, C., Digiorgio, E., Brancolini, C., and Meyer-Almes, F.J. (2016). Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. Chem. Med. Chem. 11, 2598–2606.CrossrefGoogle Scholar

  • Kokh, D.B., Czodrowski, P., Rippmann, F., and Wade, R.C. (2016). Perturbation approaches for exploring protein binding site flexibility to predict transient binding pockets. J. Chem. Theory Comput. 12, 4100–4113.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Koshland Jr, D. (1958). Application of a theory of enzyme specificity to protein synthesis. Proc. Nat. Acad. Sci. USA 44, 98.CrossrefGoogle Scholar

  • KrennHrubec, K., Marshall, B.L., Hedglin, M., Verdin, E., and Ulrich, S.M. (2007). Design and evaluation of ‘Linkerless’ hydroxamic acids as selective HDAC8 inhibitors. Bioorg. Med. Chem. Lett. 17, 2874–2878.Web of SciencePubMedCrossrefGoogle Scholar

  • Kunze, M.B., Wright, D.W., Werbeck, N.D., Kirkpatrick, J., Coveney, P.V., and Hansen, D.F. (2013). Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8. J. Am. Chem. Soc. 135, 17862–17868.Web of ScienceCrossrefPubMedGoogle Scholar

  • Lee, H.Z., Kwitkowski, V.E., Del Valle, P.L., Ricci, M.S., Saber, H., Habtemariam, B.A., Bullock, J., Bloomquist, E., Li Shen, Y., Chen, X.H., et al. (2015). FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer. Res. 21, 2666–2670.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Lu, H. and Tonge, P.J. (2010). Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14, 467–474.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Ma, B., Kumar, S., Tsai, C.-J., and Nussinov, R. (1999). Folding funnels and binding mechanisms. Prot. Eng. 12, 713–720.CrossrefGoogle Scholar

  • Madsen, A.S., Kristensen, H.M.E., Lanz, G., and Olsen, C.A. (2014). The effect of various zinc binding groups on inhibition of histone deacetylases 1-11. ChemMedChem. 9, 614–626.CrossrefWeb of SciencePubMedGoogle Scholar

  • Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247–1252.Web of ScienceCrossrefPubMedGoogle Scholar

  • Meyer-Almes, F.J. (2016). Discrimination between conformational selection and induced fit protein-ligand binding using integrated global fit analysis. Eur. Biophys. J. 45, 245–257.Web of ScienceCrossrefPubMedGoogle Scholar

  • Meyners, C., Baud, M.G., Fuchter, M.J., and Meyer-Almes, F.J. (2014a). Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors. Anal. Biochem. 460, 39–46.CrossrefWeb of ScienceGoogle Scholar

  • Meyners, C., Wawrzinek, R., Kramer, A., Hinz, S., Wessig, P., and Meyer-Almes, F.J. (2014b). A fluorescence lifetime-based binding assay for acetylpolyamine amidohydrolases from Pseudomonas aeruginosa using a [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ligand probe. Anal. Bioanal. Chem. 406, 4889–4897.Web of ScienceCrossrefGoogle Scholar

  • Meyners, C., Mertens, M., Wessig, P., and Meyer-Almes, F.J. (2017). A fluorescence-lifetime-based binding assay for class IIa histone deacetylases. Chemistry 23, 3107–3116.CrossrefWeb of SciencePubMedGoogle Scholar

  • Niegisch, G., Knievel, J., Koch, A., Hader, C., Fischer, U., Albers, P., and Schulz, W.A. (2013). Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol. 31, 1770–1779.Web of SciencePubMedCrossrefGoogle Scholar

  • Oehme, I., Deubzer, H.E., Wegener, D., Pickert, D., Linke, J.P., Hero, B., Kopp-Schneider, A., Westermann, F., Ulrich, S.M., von Deimling, A., et al. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer. Res. 15, 91–99.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Park, S.Y., Jun, J.A., Jeong, K.J., Heo, H.J., Sohn, J.S., Lee, H.Y., Park, C.G., and Kang, J. (2011). Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol. Rep. 25, 1677–1681.Web of SciencePubMedGoogle Scholar

  • Seeliger, D., Haas, J., and de Groot, B.L. (2007). Geometry-based sampling of conformational transitions in proteins. Structure 15, 1482–1492.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Singh, J., Petter, R.C., Baillie, T.A., and Whitty, A. (2011). The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317.CrossrefWeb of SciencePubMedGoogle Scholar

  • Somoza, J.R., Skene, R.J., Katz, B.A., Mol, C., Ho, J.D., Jennings, A.J., Luong, C., Arvai, A., Buggy, J.J., Chi, E., et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12, 1325–1334.CrossrefPubMedGoogle Scholar

  • Stank, A., Kokh, D.B., Horn, M., Sizikova, E., Neil, R., Panecka, J., Richter, S., and Wade, R.C. (2017). TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res. 45, W325–W330.CrossrefWeb of ScienceGoogle Scholar

  • Suzuki, T., Ota, Y., Ri, M., Bando, M., Gotoh, A., Itoh, Y., Tsumoto, H., Tatum, P.R., Mizukami, T., Nakagawa, H., et al. (2012). Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J. Med. Chem. 55, 9562–9575.CrossrefWeb of SciencePubMedGoogle Scholar

  • Tummino, P.J. and Copeland, R.A. (2008). Residence time of receptor – Ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492.Web of SciencePubMedCrossrefGoogle Scholar

  • Volund, A. (1978). Application of the four-parameter logistic model to bioassay: comparison with slope ratio and parallel line models. Biometrics 34, 357–365.CrossrefPubMedGoogle Scholar

  • Wagner, F., Zhang, Y.-L., Fass, D., Joseph, N., Gale, J., Weïwer, M., McCarren, P., Fisher, S., Kaya, T., and Zhao, W.-N. (2015). Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 6, 804–815.Web of SciencePubMedCrossrefGoogle Scholar

  • Wawrzinek, R., Ziomkowska, J., Heuveling, J., Mertens, M., Herrmann, A., Schneider, E., and Wessig, P. (2013). DBD dyes as fluorescence lifetime probes to study conformational changes in proteins. Chemistry 19, 17349–17357.Web of SciencePubMedCrossrefGoogle Scholar

  • Wentsch, H.K., Walter, N.M., Buhrmann, M., Mayer-Wrangowski, S., Rauh, D., Zaman, G.J.R., Willemsen-Seegers, N., Buijsman, R.C., Henning, M., Dauch, D., et al. (2017). Optimized target residence time: type I1/2 inhibitors for p38alpha MAP kinase with improved binding kinetics through direct interaction with the R-spine. Angewandte Chemie 56, 5363–5367.CrossrefGoogle Scholar

  • Whitehead, L., Dobler, M.R., Radetich, B., Zhu, Y., Atadja, P.W., Claiborne, T., Grob, J.E., McRiner, A., Pancost, M.R., Patnaik, A., et al. (2011). Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem. 19, 4626–4634.Web of SciencePubMedCrossrefGoogle Scholar

  • Wright, J.S., Anderson, J.M., Shadnia, H., Durst, T., and Katzenellenbogen, J.A. (2013). Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation. J. Comput. Aided Mol. Des. 27, 707–721.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2018-08-31

Accepted: 2018-11-25

Published Online: 2018-12-22

Citation Information: Biological Chemistry, 20180363, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0363.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in