Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Ahead of print

Issues

19F NMR as a versatile tool to study membrane protein structure and dynamics

Dania Rose-Sperling
  • Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
  • Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mai Anh Tran
  • Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
  • Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luca M. Lauth
  • Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedikt Goretzki
  • Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
  • Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ute A. HellmichORCID iD: https://orcid.org/0000-0001-7162-285X
  • Corresponding author
  • Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
  • Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
  • orcid.org/0000-0001-7162-285X
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-23 | DOI: https://doi.org/10.1515/hsz-2018-0473

Abstract

To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.

Keywords: 19F NMR spectroscopy; GPCR; labeling schemes; membrane protein; protein dynamics

References

  • Arntson, K.E. and Pomerantz, W.C.K. (2016). Protein-observed fluorine NMR. A bioorthogonal approach for small molecule discovery. J. Med. Chem. 59, 5158–5171.PubMedCrossrefGoogle Scholar

  • Cellitti, S.E., Jones, D.H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H., Brittain, S.M., Brinker, A., Caldwell, J., Bursulaya, B., et al. (2008). In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 130, 9268–9281.CrossrefGoogle Scholar

  • Cheng, Y. (2018). Membrane protein structural biology in the era of single particle cryo-EM. Curr. Opin. Struct. Biol. 52, 58–63.CrossrefPubMedGoogle Scholar

  • Cournia, Z., Allen, T.W., Andricioaei, I., Antonny, B., Baum, D., Brannigan, G., Buchete, N.-V., Deckman, J.T., Delemotte, L., Del Val, C., et al. (2015). Membrane protein structure, function, and dynamics: a perspective from experiments and theory. J. Membr. Biol. 248, 611–640.PubMedCrossrefGoogle Scholar

  • Crowley, P.B., Kyne, C., and Monteith, W.B. (2012). Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48, 10681–10683.CrossrefGoogle Scholar

  • Czogalla, A., Pieciul, A., Jezierski, A., and Sikorski, A.F. (2007). Attaching a spin to a protein – site-directed spin labeling in structural biology. Acta Biochim. Pol. 54, 235–244.PubMedGoogle Scholar

  • Dahanayake, J.N., Kasireddy, C., Ellis, J.M., Hildebrandt, D., Hull, O.A., Karnes, J.P., Morlan, D., and Mitchell-Koch, K.R. (2017). Evaluating electronic structure methods for accurate calculation of 19 F chemical shifts in fluorinated amino acids. J. Comput. Chem. 38, 2605–2617.CrossrefGoogle Scholar

  • Dalvit, C., Ko, S.Y., and Vulpetti, A. (2013). Application of the rule of shielding in the design of novel fluorinated structural motifs and peptidomimetics. J. Fluorine Chem. 152, 129–135.CrossrefGoogle Scholar

  • Danielson, M.A. and Falke, J.J. (1996). Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 25, 163–195.CrossrefPubMedGoogle Scholar

  • Didenko, T., Liu, J.J., Horst, R., Stevens, R.C., and Wüthrich, K. (2013). Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr. Opin. Struct. Biol. 23, 740–747.CrossrefPubMedGoogle Scholar

  • de Dios, A.C., Pearson, J.G., and Oldfield, E. (1993). Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496.PubMedCrossrefGoogle Scholar

  • Drögemüller, J., Strauß, M., Schweimer, K., Jurk, M., Rösch, P., and Knauer, S.H. (2015). Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy. Sci. Rep. 5, 16428.PubMedCrossrefGoogle Scholar

  • Elkins, M.R., Williams, J.K., Gelenter, M.D., Dai, P., Kwon, B., Sergeyev, I.V., Pentelute, B.L., and Hong, M. (2017). Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl. Acad. Sci. USA 114, 12946–12951.CrossrefGoogle Scholar

  • Fielding, L. (2003). NMR methods for the determination of protein-ligand dissociation constants. Curr. Top. Med. Chem. 3, 39–53.PubMedCrossrefGoogle Scholar

  • Goretzki, B., Glogowski, N.A., Diehl, E., Duchardt-Ferner, E., Hacker, C., Gaudet, R., and Hellmich, U.A. (2018). Structural basis of TRPV4 N-terminus interaction with Syndapin/PACSIN1-3 and PIP2. Structure 26, 1583–1593.e5.PubMedCrossrefGoogle Scholar

  • Heintz, D., Kany, H., and Kalbitzer, H.R. (1996). Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy. Biochemistry 35, 12686–12693.CrossrefPubMedGoogle Scholar

  • Hellmich, U.A. and Gaudet, R. (2014). Structural biology of TRP channels. Handb. Exp. Pharmacol. 223, 963–990.CrossrefPubMedGoogle Scholar

  • Hellmich, U.A. and Glaubitz, C. (2009). NMR and EPR studies of membrane transporters. Biol. Chem. 390, 815–834.PubMedGoogle Scholar

  • Hellmich, U.A., Pfleger, N., and Glaubitz, C. (2009). F-MAS NMR on proteorhodopsin: enhanced protocol for site-specific labeling for general application to membrane proteins. Photochem. Photobiol. 85, 535–539.CrossrefPubMedGoogle Scholar

  • Higashijima, T., Graziano, M.P., Suga, H., Kainosho, M., and Gilman, A.G. (1991). 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. J. Biochem. 266, 3396–3401.Google Scholar

  • Ho, C., Pratt, E.A., and Rule, G.S. (1989). Membrane-bound d-lactate dehydrogenase of Escherichia coli: a model for protein interactions in membranes. Biochim. Biophys. Acta 988, 173–184.CrossrefPubMedGoogle Scholar

  • Hong, M., Zhang, Y., and Hu, F. (2012). Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 1–24.PubMedCrossrefGoogle Scholar

  • Hopkins, A.L. and Groom, C.R. (2002). The druggable genome. Nat. Rev. Drug. Discov. 1, 727–730.CrossrefPubMedGoogle Scholar

  • Horst, R., Liu, J.J., Stevens, R.C., and Wüthrich, K. (2013). β₂-adrenergic receptor activation by agonists studied with 1⁹F NMR spectroscopy. Angew. Chem. Int. Ed. 52, 10762–10765.CrossrefGoogle Scholar

  • Husada, F., Bountra, K., Tassis, K., de Boer, M., Romano, M., Rebuffat, S., Beis, K., and Cordes, T. (2018). Conformational dynamics of the ABC transporter McjD seen by single-molecule FRET. EMBO J. 37.PubMedGoogle Scholar

  • Imiołek, M., Karunanithy, G., Ng, W.-L., Baldwin, A.J., Gouverneur, V., and Davis, B.G. (2018). Selective radical trifluoromethylation of native residues in proteins. J. Am. Chem. Soc. 140, 1568–1571.CrossrefPubMedGoogle Scholar

  • Isley, W.C., Urick, A.K., Pomerantz, W.C.K., and Cramer, C.J. (2016). Prediction of 19F NMR chemical shifts in labeled proteins: computational protocol and case study. Mol. Pharm. 13, 2376–2386.PubMedCrossrefGoogle Scholar

  • Jackson, J.C., Hammill, J.T., and Mehl, R.A. (2007). Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J. Am. Chem. Soc. 129, 1160–1166.PubMedCrossrefGoogle Scholar

  • Kalbitzer, H.R., Rohr, G., Nowak, E., Goody, R.S., Kuhn, W., and Zimmermann, H. (1992). A new high sensitivity 19F probe for labeling cysteine groups of proteins. NMR Biomed. 5, 347–350.CrossrefPubMedGoogle Scholar

  • Kim, T.H., Chung, K.Y., Manglik, A., Hansen, A.L., Dror, R.O., Mildorf, T.J., Shaw, D.E., Kobilka, B.K., and Prosser, R.S. (2013). The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474.CrossrefGoogle Scholar

  • Kimber, B.J., Feeney, J., Roberts, G.C., Birdsall, B., Griffiths, D.V., Burgen, A.S., and Sykes, B.D. (1978). Proximity of two tryptophan residues in dihydrofolate reductase determined by 19f NMR. Nature 271, 184–185.PubMedCrossrefGoogle Scholar

  • Kinde, M.N., Bondarenko, V., Granata, D., Bu, W., Grasty, K.C., Loll, P.J., Carnevale, V., Klein, M.L., Eckenhoff, R.G., Tang, P., et al. (2016). Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac. Proc. Natl. Acad. Sci. USA 113, 13762–13767.CrossrefGoogle Scholar

  • Kitevski-LeBlanc, J.L. and Prosser, R.S. (2012). Current applications of 19F NMR to studies of protein structure and dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 62, 1–33.PubMedCrossrefGoogle Scholar

  • Klein-Seetharaman, J., Getmanova, E.V., Loewen, M.C., Reeves, P.J., and Khorana, H.G. (1999). NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc. Natl. Acad. Sci. USA 96, 13744–13749.CrossrefGoogle Scholar

  • Kühlbrandt, W. (2014). Biochemistry. The resolution revolution. Science 343, 1443–1444.PubMedCrossrefGoogle Scholar

  • Li, C., Wang, G.-F., Wang, Y., Creager-Allen, R., Lutz, E.A., Scronce, H., Slade, K.M., Ruf, R.A.S., Mehl, R.A., and Pielak, G.J. (2010). Protein 19F NMR in Escherichia coli. J. Am. Chem. Soc. 132, 321–327.CrossrefGoogle Scholar

  • Lian, C., Le, H., Montez, B., Patterson, J., Harrell, S., Laws, D., Matsumura, I., Pearson, J., and Oldfield, E. (1994). Fluorine-19 nuclear magnetic resonance spectroscopic study of fluorophenylalanine- and fluorotryptophan-labeled avian egg white lysozymes. Biochemistry 33, 5238–5245.CrossrefPubMedGoogle Scholar

  • Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., and Wüthrich, K. (2012). Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110.CrossrefPubMedGoogle Scholar

  • Loewen, M.C., Klein-Seetharaman, J., Getmanova, E.V., Reeves, P.J., Schwalbe, H., and Khorana, H.G. (2001). Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin. Proc. Natl. Acad. Sci. USA 98, 4888–4892.CrossrefGoogle Scholar

  • Luchette, P.A., Prosser, R.S., and Sanders, C.R. (2002). Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy. J. Am. Chem. Soc. 124, 1778–1781.CrossrefGoogle Scholar

  • Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, T.S., Thian, F.S., Hubbell, W.L., et al. (2015). Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111.PubMedCrossrefGoogle Scholar

  • Meiboom, S. and Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691.CrossrefGoogle Scholar

  • Minnihan, E.C., Young, D.D., Schultz, P.G., and Stubbe, J. (2011). Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 133, 15942–15945.PubMedCrossrefGoogle Scholar

  • Mörs, K., Hellmich, U.A., Basting, D., Marchand, P., Wurm, J.P., Haase, W., and Glaubitz, C. (2013). A lipid-dependent link between activity and oligomerization state of the M. tuberculosis SMR protein TBsmr. Biochim. Biophys. Acta 1828, 561–567.CrossrefGoogle Scholar

  • Murata, K. and Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta 1862, 324–334.CrossrefGoogle Scholar

  • Nogales, E. and Scheres, S.H.W. (2015). Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58, 677–689.PubMedCrossrefGoogle Scholar

  • O’Hagan, D. and Rzepa, H.S. (1997). Some influences of fluorine in bioorganic chemistry. Chem. Commun., 645–652.Google Scholar

  • Peng, Y., Cao, S., Kiselar, J., Xiao, X., Du, Z., Hsien, A., Ko, S., Chen, Y., Agrawal, P., Zheng, W., et al. (2019). A metastable contact and structural disorder in the estrogen receptor transactivation domain. Structure 27, 229–240.CrossrefPubMedGoogle Scholar

  • Pomerantz, W.C., Wang, N., Lipinski, A.K., Wang, R., Cierpicki, T., and Mapp, A.K. (2012). Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem. Biol. 7, 1345–1350.PubMedCrossrefGoogle Scholar

  • Prosser, R.S., Luchette, P.A., and Westerman, P.W. (2000). Using O2 to probe membrane immersion depth by 19F NMR. Proc. Natl. Acad. Sci. USA 97, 9967–9971.CrossrefGoogle Scholar

  • Religa, T.L., Ruschak, A.M., Rosenzweig, R., and Kay, L.E. (2011). Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133, 9063–9068.CrossrefPubMedGoogle Scholar

  • Robertson, D.E., Kroon, P.A., and Ho, C. (1977). Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry 16, 1443–1451.CrossrefGoogle Scholar

  • Rosenau, C.P., Jelier, B.J., Gossert, A.D., and Togni, A. (2018). Exposing the Origins of Irreproducibility in Fluorine NMR Spectroscopy. Angew. Chem. Int. Ed. 57, 9528–9533.CrossrefGoogle Scholar

  • Salgado, J., Grage, S.L., Kondejewski, L.H., Hodges, R.S., McElhaney, R.N., and Ulrich, A.S. (2001). Membrane-bound structure and alignment of the antimicrobial b-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. J. Biomol. NMR 21, 191–208.CrossrefGoogle Scholar

  • Schirmeister, T., Kesselring, J., Jung, S., Schneider, T.H., Weickert, A., Becker, J., Lee, W., Bamberger, D., Wich, P.R., Distler, U., et al. (2016). Quantum chemical-based protocol for the rational design of covalent inhibitors. J. Am. Chem. Soc. 138, 8332–8335.CrossrefPubMedGoogle Scholar

  • Seeger, M.A. (2018). Membrane transporter research in times of countless structures. Biochim. Biophys. Acta Biomembr. 1860, 804–808.CrossrefPubMedGoogle Scholar

  • Shi, P., Li, D., Chen, H., Xiong, Y., Wang, Y., and Tian, C. (2012). In situ 19F NMR studies of an E. coli membrane protein. Protein Sci. 21, 596–600.CrossrefGoogle Scholar

  • Slotboom, D.J., Duurkens, R.H., Olieman, K., and Erkens, G.B. (2008). Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82.CrossrefPubMedGoogle Scholar

  • Spotswood, T.M., Evans, J.M., and Richards, J.H. (1967). Enzyme-substrate interaction by nuclear magnetic resonance. J. Am. Chem. Soc. 89, 5052–5054.PubMedCrossrefGoogle Scholar

  • Sprang, S.R. (2016). Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 105, 449–462.PubMedCrossrefGoogle Scholar

  • Steinrücken, H.C. and Amrhein, N. (1980). The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207–1212.PubMedCrossrefGoogle Scholar

  • Sušac, L., O’Connor, C., Stevens, R.C., and Wüthrich, K. (2015). In-membrane chemical modification (IMCM) for site-specific chromophore labeling of GPCRs. Angew. Chem. Int. Ed. 54, 15246–15249.CrossrefGoogle Scholar

  • Tugarinov, V. and Kay, L.E. (2003). Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125, 13868–13878.CrossrefGoogle Scholar

  • Uversky, V.N. (2018). Intrinsic disorder, protein-protein interactions, and disease. Adv. Protein. Chem. Struct. Biol. 110, 85–121.CrossrefPubMedGoogle Scholar

  • von Heijne, G. (2007). The membrane protein universe: what’s out there and why bother? J. Intern. Med. 261, 543–557.PubMedCrossrefGoogle Scholar

  • Wagner, A., Le, T.A., Brennich, M., Klein, P., Bader, N., Diehl, E., Paszek, D., Weickhmann, A.K., Dirdjaja, N., Krauth-Siegel, R.L., et al. (2019). Inhibitor-induced dimerization of an essential oxidoreductase from African trypanosomes. Angew. Chem. Int. Ed. 58, 3640–3644.CrossrefGoogle Scholar

  • Wang, L., Brock, A., Herberich, B., and Schultz, P.G. (2001). Expanding the genetic code of Escherichia coli. Science 292, 498–500.CrossrefPubMedGoogle Scholar

  • Williams, S.P., Haggie, P.M., and Brindle, K.M. (1997). 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys. J. 72, 490–498.CrossrefPubMedGoogle Scholar

  • Ye, L., van Eps, N., Zimmer, M., Ernst, O.P., and Prosser, R.S. (2016). Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268.PubMedCrossrefGoogle Scholar

  • Ye, L., Neale, C., Sljoka, A., Lyda, B., Pichugin, D., Tsuchimura, N., Larda, S.T., Pomès, R., García, A.E., Ernst, O.P., et al. (2018). Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Comun. 9, 1372.CrossrefGoogle Scholar

  • Yin, H. and Flynn, A.D. (2016). Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-12-20

Accepted: 2019-04-17

Published Online: 2019-05-23


Citation Information: Biological Chemistry, 20180473, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2018-0473.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in