Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred


IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

Online
ISSN
1437-4315
See all formats and pricing
More options …
Ahead of print

Issues

Structure, dynamics and interactions of large SRP variants

Klemens Wild / Matthias M.M. Becker / Georg Kempf / Irmgard Sinning
Published Online: 2019-08-30 | DOI: https://doi.org/10.1515/hsz-2019-0282

Abstract

Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.

Keywords: co-translational targeting of ribosome-nascent chain complexes (RNCs); dynamics of macromolecular complexes; protein-RNA and RNA-RNA interactions; signal recognition particle (SRP); X-ray and cryo-EM structures

References

  • Akopian, D., Dalal, K., Shen, K., Duong, F., and Shan, S.O. (2013). SecYEG activates GTPases to drive the completion of cotranslational protein targeting. J. Cell. Biol. 200, 397–405.CrossrefPubMedGoogle Scholar

  • Andersen, E.S., Rosenblad, M.A., Larsen, N., Westergaard, J.C., Burks, J., Wower, I.K., Wower, J., Gorodkin, J., Samuelsson, T., and Zwieb, C. (2006). The tmRDB and SRPDB resources. Nucleic Acids Res. 34, D163–D168.PubMedCrossrefGoogle Scholar

  • Arana-Argaez, V.E., Delgado-Rizo, V., Pizano-Martinez, O.E., Martinez-Garcia, E.A., Martin-Marquez, B.T., Munoz-Gomez, A., Petri, M.H., Armendariz-Borunda, J., Espinosa-Ramirez, G., Zuniga-Tamayo, D.A., et al. (2010). Inhibitors of MAPK pathway ERK1/2 or p38 prevent the IL-1{beta}-induced up-regulation of SRP72 autoantigen in Jurkat cells. J. Biol. Chem. 285, 32824–32833.PubMedCrossrefGoogle Scholar

  • Ast, T., Cohen, G., and Schuldiner, M. (2013). A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152, 1134–1145.CrossrefPubMedGoogle Scholar

  • Ataide, S.F., Schmitz, N., Shen, K., Ke, A., Shan, S.O., Doudna, J.A., and Ban, N. (2011). The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886.PubMedCrossrefGoogle Scholar

  • Aviram, N. and Schuldiner, M. (2017). Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J. Cell. Sci. 130, 4079–4085.CrossrefGoogle Scholar

  • Bahari, L., Parlitz, R., Eitan, A., Stjepanovic, G., Bochkareva, E.S., Sinning, I., and Bibi, E. (2007). Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY. J. Biol. Chem. 282, 32168–32175.CrossrefPubMedGoogle Scholar

  • Bange, G. and Sinning, I. (2013). SIMIBI twins in protein targeting and localization. Nat. Struct. Mol. Biol. 20, 776–780.CrossrefPubMedGoogle Scholar

  • Bange, G., Petzold, G., Wild, K., Parlitz, R.O., and Sinning, I. (2007a). The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proc. Natl. Acad. Sci. U.S.A. 104, 13621–13625.CrossrefGoogle Scholar

  • Bange, G., Wild, K., and Sinning, I. (2007b). Protein translocation: checkpoint role for SRP GTPase activation. Curr. Biol. 17, R980–R982.CrossrefGoogle Scholar

  • Bange, G., Kummerer, N., Grudnik, P., Lindner, R., Petzold, G., Kressler, D., Hurt, E., Wild, K., and Sinning, I. (2011). Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat. Struct. Mol. Biol. 18, 1376–1380.CrossrefPubMedGoogle Scholar

  • Batey, R.T., Rambo, R.P., Lucast, L., Rha, B., and Doudna, J.A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239.CrossrefPubMedGoogle Scholar

  • Becker, T., Bhushan, S., Jarasch, A., Armache, J.P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373.PubMedCrossrefGoogle Scholar

  • Becker, M.M., Lapouge, K., Segnitz, B., Wild, K., and Sinning, I. (2017). Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Nucleic Acids Res. 45, 470–481.CrossrefPubMedGoogle Scholar

  • Beckert, B., Kedrov, A., Sohmen, D., Kempf, G., Wild, K., Sinning, I., Stahlberg, H., Wilson, D.N., and Beckmann, R. (2015). Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Nat. Struct. Mol. Biol. 22, 767–773.PubMedCrossrefGoogle Scholar

  • Berndt, U., Oellerer, S., Zhang, Y., Johnson, A.E., and Rospert, S. (2009). A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. U.S.A. 106, 1398–1403.PubMedCrossrefGoogle Scholar

  • Bibi, E. (2012). Is there a twist in the Escherichia coli signal recognition particle pathway? Trends Biochem. Sci. 37, 1–6.CrossrefGoogle Scholar

  • Bornemann, T., Jockel, J., Rodnina, M.V., and Wintermeyer, W. (2008). Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15, 494–499.PubMedCrossrefGoogle Scholar

  • Bradshaw, N., Neher, S.B., Booth, D.S., and Walter, P. (2009). Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127–130.CrossrefPubMedGoogle Scholar

  • Braig, D., Bar, C., Thumfart, J.O., and Koch, H.G. (2009). Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J. Mol. Biol. 390, 401–413.PubMedCrossrefGoogle Scholar

  • Brooks, M.A., Ravelli, R.B., McCarthy, A.A., Strub, K., and Cusack, S. (2009). Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle. Acta Crystallogr. D Biol. Crystallogr. 65, 421–433.CrossrefPubMedGoogle Scholar

  • Bui, N. and Strub, K. (1999). New insights into signal recognition and elongation arrest activities of the signal recognition particle. Biol. Chem. 380, 135–145.PubMedGoogle Scholar

  • Carapito, R., Konantz, M., Paillard, C., Miao, Z., Pichot, A., Leduc, M.S., Yang, Y., Bergstrom, K.L., Mahoney, D.H., and Shardy, D.L. (2017). Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J. Clin. Invest. 127, 4090–4103.PubMedCrossrefGoogle Scholar

  • Chartron, J.W., Hunt, K.C., and Frydman, J. (2016). Cotranslational signal-independent SRP preloading during membrane targeting. Nature 536, 224–228.CrossrefPubMedGoogle Scholar

  • Clemons, W.M., Jr., Gowda, K., Black, S.D., Zwieb, C., and Ramakrishnan, V. (1999). Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 Å resolution: evidence for the mechanism of signal peptide binding. J. Mol. Biol. 292, 697–705.PubMedCrossrefGoogle Scholar

  • Connolly, T. and Gilmore, R. (1989). The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610.CrossrefPubMedGoogle Scholar

  • Cross, B.C., Sinning, I., Luirink, J., and High, S. (2009). Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell. Biol. 10, 255–264.PubMedCrossrefGoogle Scholar

  • de Leeuw, E., Poland, D., Mol, O., Sinning, I., ten Hagen-Jongman, C.M., Oudega, B., and Luirink, J. (1997). Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett. 416, 225–229.CrossrefGoogle Scholar

  • del Alamo, M., Hogan, D.J., Pechmann, S., Albanese, V., Brown, P.O., and Frydman, J. (2011). Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9, e1001100.PubMedCrossrefGoogle Scholar

  • Denks, K., Sliwinski, N., Erichsen, V., Borodkina, B., Origi, A., and Koch, H.G. (2017). The signal recognition particle contacts uL23 and scans substrate translation inside the ribosomal tunnel. Nat. Microbiol. 2, 16265.CrossrefPubMedGoogle Scholar

  • Egea, P.F., Shan, S.O., Napetschnig, J., Savage, D.F., Walter, P., and Stroud, R.M. (2004). Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221.PubMedCrossrefGoogle Scholar

  • Egea, P.F., Napetschnig, J., Walter, P., and Stroud, R.M. (2008a). Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS One 3, e3528.CrossrefGoogle Scholar

  • Egea, P.F., Tsuruta, H., de Leon, G.P., Napetschnig, J., Walter, P., and Stroud, R.M. (2008b). Structures of the signal recognition particle receptor from the archaeon Pyrococcus furiosus: implications for the targeting step at the membrane. PLoS One 3, e3619.CrossrefGoogle Scholar

  • Elvekrog, M.M. and Walter, P. (2015). Dynamics of co-translational protein targeting. Curr. Opin. Chem. Biol. 29, 79–86.CrossrefPubMedGoogle Scholar

  • Estrozi, L.F., Boehringer, D., Shan, S.O., Ban, N., and Schaffitzel, C. (2011). Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nat. Struct. Mol. Biol. 18, 88–90.CrossrefGoogle Scholar

  • Fluman, N., Navon, S., Bibi, E., and Pilpel, Y. (2014). mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. Elife 3, e03440.CrossrefGoogle Scholar

  • Focia, P.J., Alam, H., Lu, T., Ramirez, U.D., and Freymann, D.M. (2004a). Novel protein and Mg2+ configurations in the Mg2+GDP complex of the SRP GTPase ffh. Proteins 54, 222–230.Google Scholar

  • Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A., and Freymann, D.M. (2004b). Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377.CrossrefGoogle Scholar

  • Focia, P.J., Gawronski-Salerno, J., Coon, J.S.T., and Freymann, D.M. (2006). Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J. Mol. Biol. 360, 631–643.PubMedCrossrefGoogle Scholar

  • Freymann, D.M., Keenan, R.J., Stroud, R.M., and Walter, P. (1997). Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364.CrossrefPubMedGoogle Scholar

  • Fulga, T.A., Sinning, I., Dobberstein, B., and Pool, M.R. (2001). SRbeta coordinates signal sequence release from SRP with ribosome binding to the translocon. EMBO J. 20, 2338–2347.PubMedCrossrefGoogle Scholar

  • Gariani, T., Samuelsson, T., and Sauer-Eriksson, A.E. (2006). Conformational variability of the GTPase domain of the signal recognition particle receptor FtsY. J. Struct. Biol. 153, 85–96.PubMedCrossrefGoogle Scholar

  • Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M., and Wittinghofer, A. (2009). It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell. Biol. 10, 423–429.CrossrefPubMedGoogle Scholar

  • Gawronski-Salerno, J. and Freymann, D.M. (2007). Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J. Struct. Biol. 158, 122–128.PubMedCrossrefGoogle Scholar

  • Gawronski-Salerno, J., Coon, J.S.t., Focia, P.J., and Freymann, D.M. (2007). X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins 66, 984–995.Google Scholar

  • Gloge, F., Becker, A.H., Kramer, G., and Bukau, B. (2014). Co-translational mechanisms of protein maturation. Curr. Opin. Struct. Biol. 24, 24–33.CrossrefPubMedGoogle Scholar

  • Gogala, M., Becker, T., Beatrix, B., Armache, J.P., Barrio-Garcia, C., Berninghausen, O., and Beckmann, R. (2014). Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107–110.CrossrefPubMedGoogle Scholar

  • Grosshans, H., Deinert, K., Hurt, E., and Simos, G. (2001). Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J. Cell. Biol. 153, 745–762.CrossrefPubMedGoogle Scholar

  • Grotwinkel, J.T., Wild, K., Segnitz, B., and Sinning, I. (2014). SRP RNA remodeling by SRP68 explains its role in protein translocation. Science 344, 101–104.PubMedCrossrefGoogle Scholar

  • Grudnik, P., Bange, G., and Sinning, I. (2009). Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782.PubMedGoogle Scholar

  • Gundelfinger, E.D., Krause, E., Melli, M., and Dobberstein, B. (1983). The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res. 11, 7363–7374.PubMedCrossrefGoogle Scholar

  • Gupta, S., Roy, M., and Ghosh, A. (2017). The archaeal signal recognition particle: present understanding and future perspective. Curr. Microbiol. 74, 284–297.PubMedCrossrefGoogle Scholar

  • Hainzl, T. and Sauer-Eriksson, A.E. (2015). Signal-sequence induced conformational changes in the signal recognition particle. Nat. Commun. 6, 7163.CrossrefPubMedGoogle Scholar

  • Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K., and Sauer-Eriksson, A.E. (2011). Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 18, 389–391.PubMedCrossrefGoogle Scholar

  • Halic, M., Becker, T., Pool, M.R., Spahn, C.M., Grassucci, R.A., Frank, J., and Beckmann, R. (2004). Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814.CrossrefPubMedGoogle Scholar

  • Halic, M., Blau, M., Becker, T., Mielke, T., Pool, M.R., Wild, K., Sinning, I., and Beckmann, R. (2006a). Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511.CrossrefGoogle Scholar

  • Halic, M., Gartmann, M., Schlenker, O., Mielke, T., Pool, M.R., Sinning, I., and Beckmann, R. (2006b). Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745–747.CrossrefGoogle Scholar

  • Hegde, R.S. and Bernstein, H.D. (2006). The surprising complexity of signal sequences. Trends Biochem. Sci. 31, 563–571.PubMedCrossrefGoogle Scholar

  • Hengstman, G.J., ter Laak, H.J., Vree Egberts, W.T., Lundberg, I.E., Moutsopoulos, H.M., Vencovsky, J., Doria, A., Mosca, M., van Venrooij, W.J., and van Engelen, B.G. (2006). Anti-signal recognition particle autoantibodies: marker of a necrotising myopathy. Ann. Rheum. Dis. 65, 1635–1638.CrossrefPubMedGoogle Scholar

  • Holtkamp, W., Lee, S., Bornemann, T., Senyushkina, T., Rodnina, M.V., and Wintermeyer, W. (2012). Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 19, 1332–1337.PubMedCrossrefGoogle Scholar

  • Houben, E.N., Zarivach, R., Oudega, B., and Luirink, J. (2005). Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome. J. Cell. Biol. 170, 27–35.CrossrefPubMedGoogle Scholar

  • Huck, L., Scherrer, A., Terzi, L., Johnson, A.E., Bernstein, H.D., Cusack, S., Weichenrieder, O., and Strub, K. (2004). Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Nucleic Acids Res. 32, 4915–4924.CrossrefPubMedGoogle Scholar

  • Iakhiaeva, E., Yin, J., and Zwieb, C. (2005). Identification of an RNA-binding domain in human SRP72. J. Mol. Biol. 345, 659–666.CrossrefPubMedGoogle Scholar

  • Iakhiaeva, E., Bhuiyan, S.H., Yin, J., and Zwieb, C. (2006). Protein SRP68 of human signal recognition particle: identification of the RNA and SRP72 binding domains. Protein Sci. 15, 1290–1302.PubMedCrossrefGoogle Scholar

  • Iakhiaeva, E., Hinck, C.S., Hinck, A.P., and Zwieb, C. (2009). Characterization of the SRP68/72 interface of human signal recognition particle by systematic site-directed mutagenesis. Protein Sci. 18, 2183–2195.CrossrefPubMedGoogle Scholar

  • Jadhav, B., McKenna, M., Johnson, N., High, S., Sinning, I., and Pool, M.R. (2015a). Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Nat. Commun. 6, 10133.CrossrefGoogle Scholar

  • Jadhav, B., Wild, K., Pool, M.R., and Sinning, I. (2015b). Structure and switch cycle of SRβ as ancestral eukaryotic GTPase associated with secretory membranes. Structure 23, 1838–1847.CrossrefGoogle Scholar

  • Jagath, J.R., Matassova, N.B., de Leeuw, E., Warnecke, J.M., Lentzen, G., Rodnina, M.V., Luirink, J., and Wintermeyer, W. (2001). Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 7, 293–301.PubMedCrossrefGoogle Scholar

  • Jan, C.H., Williams, C.C., and Weissman, J.S. (2014). Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521.PubMedCrossrefGoogle Scholar

  • Janda, C.Y., Li, J., Oubridge, C., Hernandez, H., Robinson, C.V., and Nagai, K. (2010). Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510.CrossrefPubMedGoogle Scholar

  • Jensen, C.G. and Pedersen, S. (1994). Concentrations of 4.5S RNA and Ffh protein in Escherichia coli: the stability of Ffh protein is dependent on the concentration of 4.5S RNA. J. Bacteriol. 176, 7148–7154.CrossrefPubMedGoogle Scholar

  • Jomaa, A., Boehringer, D., Leibundgut, M., and Ban, N. (2016). Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun. 7, 10471.CrossrefGoogle Scholar

  • Jomaa, A., Fu, Y.H., Boehringer, D., Leibundgut, M., Shan, S.O., and Ban, N. (2017). Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat. Commun. 8, 15470.CrossrefPubMedGoogle Scholar

  • Keenan, R.J., Freymann, D.M., Walter, P., and Stroud, R.M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191.PubMedCrossrefGoogle Scholar

  • Kempf, G., Wild, K., and Sinning, I. (2014). Structure of the complete bacterial SRP Alu domain. Nucleic Acids Res. 26, 1440–1450.Google Scholar

  • Kempf, G., Stjepanovic, G., Sloan, J., Hendricks, A., Lapouge, K., and Sinning, I. (2018). The Escherichia coli SRP receptor forms a homodimer at the membrane. Structure 26, 1440–1450.e1445.CrossrefPubMedGoogle Scholar

  • Kirwan, M., Walne, A.J., Plagnol, V., Velangi, M., Ho, A., Hossain, U., Vulliamy, T., and Dokal, I. (2012). Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am. J. Hum. Genet. 90, 888–892.CrossrefPubMedGoogle Scholar

  • Klein, D.J., Schmeing, T.M., Moore, P.B., and Steitz, T.A. (2001). The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221.PubMedCrossrefGoogle Scholar

  • Kobayashi, K., Jomaa, A., Lee, J.H., Chandrasekar, S., Boehringer, D., Shan, S.O., and Ban, N. (2018). Structure of a prehandover mammalian ribosomal SRP.SRP receptor targeting complex. Science 360, 323–327.CrossrefPubMedGoogle Scholar

  • Kramer, G., Boehringer, D., Ban, N., and Bukau, B. (2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589–597.CrossrefPubMedGoogle Scholar

  • Kraut-Cohen, J., Afanasieva, E., Haim-Vilmovsky, L., Slobodin, B., Yosef, I., Bibi, E., and Gerst, J.E. (2013). Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 24, 3069–3084.PubMedCrossrefGoogle Scholar

  • Kuglstatter, A., Oubridge, C., and Nagai, K. (2002). Induced structural changes of 7SL RNA during the assembly of human signal recognition particle. Nat. Struct. Biol. 9, 740–744.CrossrefPubMedGoogle Scholar

  • Kuhn, P., Draycheva, A., Vogt, A., Petriman, N.A., Sturm, L., Drepper, F., Warscheid, B., Wintermeyer, W., and Koch, H.G. (2015). Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J. Cell. Biol. 211, 91–104.CrossrefPubMedGoogle Scholar

  • Lakomek, N.A., Draycheva, A., Bornemann, T., and Wintermeyer, W. (2016). Electrostatics and intrinsic disorder drive translocon binding of the SRP receptor FtsY. Angew. Chem. Int. Ed. 55, 9544–9547.CrossrefGoogle Scholar

  • Lee, J.H., Chandrasekar, S., Chung, S., Hwang Fu, Y.H., Liu, D., Weiss, S., and Shan, S.O. (2018). Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting. Proc. Natl. Acad. Sci. U.S.A. 115, E5487–E5496.PubMedCrossrefGoogle Scholar

  • Legate, K.R. and Andrews, D.W. (2003). The beta-subunit of the signal recognition particle receptor is a novel GTP-binding protein without intrinsic GTPase activity. J. Biol. Chem. 278, 27712–27720.PubMedCrossrefGoogle Scholar

  • Leipe, D.D., Wolf, Y.I., Koonin, E.V., and Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72.CrossrefPubMedGoogle Scholar

  • Li, J., Zhou, F., Zhan, D., Gao, Q., Cui, N., Li, J., Iakhiaeva, E., Zwieb, C., Lin, B., and Wong, J. (2012). A novel histone H4 arginine 3 methylation-sensitive histone H4 binding activity and transcriptional regulatory function for signal recognition particle subunits SRP68 and SRP72. J. Biol. Chem. 287, 40641–40651.CrossrefPubMedGoogle Scholar

  • Liu, L., Ben-Shlomo, H., Xu, Y.X., Stern, M.Z., Goncharov, I., Zhang, Y., and Michaeli, S. (2003). The trypanosomatid signal recognition particle consists of two RNA molecules, a 7SL RNA homologue and a novel tRNA-like molecule. J. Biol. Chem. 278, 18271–18280.CrossrefGoogle Scholar

  • Lustig, Y., Goldshmidt, H., Uliel, S., and Michaeli, S. (2005). The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J. Cell. Sci. 118, 4551–4562.CrossrefPubMedGoogle Scholar

  • Lutcke, H. and Dobberstein, B. (1993). Structure and function of signal recognition particle (SRP). Mol. Biol. Rep. 18, 143–147.PubMedCrossrefGoogle Scholar

  • Martoglio, B. and Dobberstein, B. (1998). Signal sequences: more than just greasy peptides. Trends Cell. Biol. 8, 410–415.CrossrefPubMedGoogle Scholar

  • Massenet, S. (2019). In vivo assembly of eukaryotic signal recognition particle: a still enigmatic process involving the SMN complex. Biochimie 19, 30109–30119.Google Scholar

  • Menichelli, E., Isel, C., Oubridge, C., and Nagai, K. (2007). Protein-induced conformational changes of RNA during the assembly of human signal recognition particle. J. Mol. Biol. 367, 187–203.CrossrefPubMedGoogle Scholar

  • Meyer, D.I. and Dobberstein, B. (1980). Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell. Biol. 87, 503–508.PubMedCrossrefGoogle Scholar

  • Montoya, G., Svensson, C., Luirink, J., and Sinning, I. (1997). Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368.CrossrefPubMedGoogle Scholar

  • Moser, C., Mol, O., Goody, R.S., and Sinning, I. (1997). The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl. Acad. Sci. U.S.A. 94, 11339–11344.CrossrefGoogle Scholar

  • Murray, T.S. and Kazmierczak, B.I. (2006). FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188, 6995–7004.CrossrefPubMedGoogle Scholar

  • Nakamura, K., Yahagi, S., Yamazaki, T., and Yamane, K. (1999). Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem. 274, 13569–13576.CrossrefPubMedGoogle Scholar

  • Neher, S.B., Bradshaw, N., Floor, S.N., Gross, J.D., and Walter, P. (2008). SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction. Nat. Struct. Mol. Biol. 15, 916–923.CrossrefPubMedGoogle Scholar

  • Nishiguchi, M., Honda, K., Amikura, R., Nakamura, K., and Yamane, K. (1994). Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J. Bacteriol. 176, 157–165.CrossrefPubMedGoogle Scholar

  • Noriega, T.R., Chen, J., Walter, P., and Puglisi, J.D. (2014a). Real-time observation of signal recognition particle binding to actively translating ribosomes. Elife 3, e04418.Google Scholar

  • Noriega, T.R., Tsai, A., Elvekrog, M.M., Petrov, A., Neher, S.B., Chen, J., Bradshaw, N., Puglisi, J.D., and Walter, P. (2014b). Signal recognition particle-ribosome binding is sensitive to nascent chain length. J. Biol. Chem. 289, 19294–19305.CrossrefGoogle Scholar

  • Ogg, S.C. and Walter, P. (1995). SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81, 1075–1084.CrossrefGoogle Scholar

  • Ogg, S.C., Barz, W.P., and Walter, P. (1998). A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor β-subunit. J. Cell. Biol. 142, 341–354.CrossrefPubMedGoogle Scholar

  • Panchal, M., Rawat, K., Kumar, G., Kibria, K.M., Singh, S., Kalamuddin, M., Mohmmed, A., Malhotra, P., and Tuteja, R. (2014). Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell Death Dis 5, e994.CrossrefPubMedGoogle Scholar

  • Parlitz, R., Eitan, A., Stjepanovic, G., Bahari, L., Bange, G., Bibi, E., and Sinning, I. (2007). Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184.CrossrefPubMedGoogle Scholar

  • Pechmann, S., Chartron, J.W., and Frydman, J. (2014). Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105.CrossrefPubMedGoogle Scholar

  • Peluso, P., Herschlag, D., Nock, S., Freymann, D.M., Johnson, A.E., and Walter, P. (2000). Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288, 1640–1643.PubMedCrossrefGoogle Scholar

  • Politz, J.C., Yarovoi, S., Kilroy, S.M., Gowda, K., Zwieb, C., and Pederson, T. (2000). Signal recognition particle components in the nucleolus. Proc. Natl. Acad. Sci. U.S.A. 97, 55–60.CrossrefPubMedGoogle Scholar

  • Pool, M.R., Stumm, J., Fulga, T.A., Sinning, I., and Dobberstein, B. (2002). Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348.PubMedCrossrefGoogle Scholar

  • Powers, T. and Walter, P. (1997). Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886.PubMedCrossrefGoogle Scholar

  • Rapiejko, P.J. and Gilmore, R. (1997). Empty site forms of the SRP54 and SRα GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 89, 703–713.CrossrefGoogle Scholar

  • Regalia, M., Rosenblad, M.A., and Samuelsson, T. (2002). Prediction of signal recognition particle RNA genes. Nucleic Acids Res. 30, 3368–3377.PubMedCrossrefGoogle Scholar

  • Reid, D.W. and Nicchitta, C.V. (2015). Local translation. Comment on “Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling”. Science 348, 1217.Google Scholar

  • Rinke-Appel, J., Osswald, M., von Knoblauch, K., Mueller, F., Brimacombe, R., Sergiev, P., Avdeeva, O., Bogdanov, A., and Dontsova, O. (2002). Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. RNA 8, 612–625.PubMedCrossrefGoogle Scholar

  • Rosenblad, M.A., Zwieb, C., and Samuelsson, T. (2004). Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi. BMC Genomics 5, 5.PubMedCrossrefGoogle Scholar

  • Rosenblad, M.A., Larsen, N., Samuelsson, T., and Zwieb, C. (2009). Kinship in the SRP RNA family. RNA Biol. 6, 508–516.CrossrefPubMedGoogle Scholar

  • Rosendal, K.R., Wild, K., Montoya, G., and Sinning, I. (2003). Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl. Acad. Sci. U.S.A. 100, 14701–14706.CrossrefPubMedGoogle Scholar

  • Saraogi, I., Akopian, D., and Shan, S.O. (2014). Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. J. Cell. Biol. 205, 693–706.PubMedCrossrefGoogle Scholar

  • Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U., and Moarefi, I. (2000). Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210.CrossrefPubMedGoogle Scholar

  • Schibich, D., Gloge, F., Pohner, I., Bjorkholm, P., Wade, R.C., von Heijne, G., Bukau, B., and Kramer, G. (2016). Global profiling of SRP interaction with nascent polypeptides. Nature 536, 219–223.CrossrefPubMedGoogle Scholar

  • Schlenker, O., Hendricks, A., Sinning, I., and Wild, K. (2006). The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J. Biol. Chem. 281, 8898–8906.PubMedCrossrefGoogle Scholar

  • Schwartz, T. and Blobel, G. (2003). Structural basis for the function of the β subunit of the eukaryotic signal recognition particle receptor. Cell 112, 793–803.PubMedCrossrefGoogle Scholar

  • Shen, K. and Shan, S.O. (2010). Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc. Natl. Acad. Sci. U.S.A. 107, 7698–7703.CrossrefPubMedGoogle Scholar

  • Shen, K., Wang, Y., Hwang Fu, Y.H., Zhang, Q., Feigon, J., and Shan, S.O. (2013a). Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. J. Biol. Chem. 288, 36385–36397.CrossrefGoogle Scholar

  • Shen, K., Wang, Y., Hwang Fu, Y.H., Zhang, Q., Feigon, J., and Shan, S.O. (2013b). Molecular mechanism of GTPase activation at the SRP RNA distal end. J. Biol. Chem. 288, 36385–36397.CrossrefGoogle Scholar

  • Siegel, V. and Walter, P. (1988a). Binding sites of the 19-kDa and 68/72-kDa signal recognition particle (SRP) proteins on SRP RNA as determined in protein-RNA “footprinting”. Proc. Natl. Acad. Sci. U.S.A. 85, 1801–1805.CrossrefGoogle Scholar

  • Siegel, V. and Walter, P. (1988b). Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52, 39–49.CrossrefGoogle Scholar

  • Siegel, V. and Walter, P. (1988c). Functional dissection of the signal recognition particle. Trends Biochem. Sci. 13, 314–316.CrossrefGoogle Scholar

  • Steinberg, R., Knupffer, L., Origi, A., Asti, R., and Koch, H.G. (2018). Co-translational protein targeting in bacteria. FEMS Microbiol. Lett. 365. Doi: 10.1093/femsle/fny095.Google Scholar

  • Stjepanovic, G., Kapp, K., Bange, G., Graf, C., Parlitz, R., Wild, K., Mayer, M.P., and Sinning, I. (2011). Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. J. Biol. Chem. 286, 23489–23497.PubMedCrossrefGoogle Scholar

  • Strub, K., Fornallaz, M., and Bui, N. (1999). The Alu domain homolog of the yeast signal recognition particle consists of an Srp14p homodimer and a yeast-specific RNA structure. RNA 5, 1333–1347.CrossrefGoogle Scholar

  • Tajima, S., Lauffer, L., Rath, V.L., and Walter, P. (1986). The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J. Cell. Biol. 103, 1167–1178.CrossrefPubMedGoogle Scholar

  • UniProt, C. (2015). UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212.PubMedCrossrefGoogle Scholar

  • Utz, P.J., Hottelet, M., Le, T.M., Kim, S.J., Geiger, M.E., van Venrooij, W.J., and Anderson, P. (1998). The 72-kDa component of signal recognition particle is cleaved during apoptosis. J. Biol. Chem. 273, 35362–35370.PubMedCrossrefGoogle Scholar

  • van Nues, R.W., Leung, E., McDonald, J.C., Dantuluru, I., and Brown, J.D. (2008). Roles for Srp72p in assembly, nuclear export and function of the signal recognition particle. RNA Biol. 5, 73–83.CrossrefPubMedGoogle Scholar

  • Voigts-Hoffmann, F., Schmitz, N., Shen, K., Shan, S.O., Ataide, S.F., and Ban, N. (2013). The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Mol. Cell. 52, 643–654.CrossrefPubMedGoogle Scholar

  • von Loeffelholz, O., Jiang, Q., Ariosa, A., Karuppasamy, M., Huard, K., Berger, I., Shan, S.O., and Schaffitzel, C. (2015). Ribosome-SRP-FtsY cotranslational targeting complex in the closed state. Proc. Natl. Acad. Sci. U.S.A. 112, 3943–3948.CrossrefPubMedGoogle Scholar

  • Voorhees, R.M. and Hegde, R.S. (2015). Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 4, e07975.CrossrefGoogle Scholar

  • Voorhees, R.M. and Hegde, R.S. (2016). Structure of the Sec61 channel opened by a signal sequence. Science 351, 88–91.PubMedCrossrefGoogle Scholar

  • Voorhees, R.M., Fernandez, I.S., Scheres, S.H., and Hegde, R.S. (2014). Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643.CrossrefPubMedGoogle Scholar

  • Walter, P. and Blobel, G. (1980). Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 77, 7112–7116.PubMedCrossrefGoogle Scholar

  • Walter, P. and Blobel, G. (1981a). Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell. Biol. 91, 557–561.CrossrefGoogle Scholar

  • Walter, P. and Blobel, G. (1981b). Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J. Cell. Biol. 91, 551–556.CrossrefGoogle Scholar

  • Walter, P. and Blobel, G. (1982). Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299, 691–698.CrossrefPubMedGoogle Scholar

  • Walter, P. and Johnson, A.E. (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell. Biol. 10, 87–119.CrossrefPubMedGoogle Scholar

  • Walter, P., Ibrahimi, I., and Blobel, G. (1981). Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell. Biol. 91, 545–550.CrossrefPubMedGoogle Scholar

  • Weichenrieder, O., Wild, K., Strub, K., and Cusack, S. (2000). Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408, 167–173.PubMedCrossrefGoogle Scholar

  • Weichenrieder, O., Stehlin, C., Kapp, U., Birse, D.E., Timmins, P.A., Strub, K., and Cusack, S. (2001). Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. RNA 7, 731–740.PubMedCrossrefGoogle Scholar

  • Wild, K., Sinning, I., and Cusack, S. (2001). Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Science 294, 598–601.PubMedCrossrefGoogle Scholar

  • Wild, K., Halic, M., Sinning, I., and Beckmann, R. (2004). SRP meets the ribosome. Nat. Struct. Mol. Biol. 11, 1049–1053.CrossrefPubMedGoogle Scholar

  • Wild, K., Bange, G., Bozkurt, G., Segnitz, B., Hendricks, A., and Sinning, I. (2010). Structural insights into the assembly of the human and archaeal signal recognition particles. Acta Crystallogr. D Biol. Crystallogr. 66, 295–303.CrossrefPubMedGoogle Scholar

  • Wild, K., Bange, G., Motiejunas, D., Kribelbauer, J., Hendricks, A., Segnitz, B., Wade, R.C., and Sinning, I. (2016). Structural basis for conserved regulation and adaptation of the signal recognition particle targeting complex. J. Mol. Biol. 428, 2880–2897.PubMedCrossrefGoogle Scholar

  • Wild, K., Juaire, K.D., Soni, K., Shanmuganathan, V., Hendricks, A., Segnitz, B., Beckmann, R., and Sinning, I. (2019). Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Nucleic Acids Res. 47, 3184–3196.CrossrefPubMedGoogle Scholar

  • Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971.CrossrefGoogle Scholar

  • Zeytuni, N. and Zarivach, R. (2012). Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397–405.CrossrefPubMedGoogle Scholar

  • Zhang, X. and Shan, S.O. (2014). Fidelity of cotranslational protein targeting by the signal recognition particle. Annu. Rev. Biophys. 43, 381–408.PubMedCrossrefGoogle Scholar

  • Zhang, X., Schaffitzel, C., Ban, N., and Shan, S.O. (2009). Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. U.S.A. 106, 1754–1759.CrossrefGoogle Scholar

  • Zhang, X., Lam, V.Q., Mou, Y., Kimura, T., Chung, J., Chandrasekar, S., Winkler, J.R., Mayo, S.L., and Shan, S.O. (2011). Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl. Acad. Sci. U.S.A. 108, 6450–6455.PubMedCrossrefGoogle Scholar

  • Zhang, H., Campbell, D.A., Sturm, N.R., Rosenblad, M.A., Dungan, C.F., and Lin, S. (2013). Signal recognition particle RNA in dinoflagellates and the Perkinsid Perkinsus marinus. Protist 164, 748–761.PubMedCrossrefGoogle Scholar

  • Zheng, N. and Gierasch, L.M. (1996). Signal sequences: the same yet different. Cell 86, 849–852.CrossrefPubMedGoogle Scholar

  • Ziehe, D., Dunschede, B., and Schunemann, D. (2017). From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol. Chem. 398, 653–661.PubMedGoogle Scholar

  • Zopf, D., Bernstein, H.D., Johnson, A.E., and Walter, P. (1990). The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517.PubMedCrossrefGoogle Scholar

About the article

aKlemens Wild, Matthias M.M. Becker and Georg Kempf: These authors contributed equally to this article.


Received: 2019-06-07

Accepted: 2019-08-09

Published Online: 2019-08-30


Citation Information: Biological Chemistry, 20190282, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2019-0282.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in