Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The B.E. Journal of Macroeconomics

Editor-in-Chief: Cavalcanti, Tiago / Kambourov, Gueorgui

Ed. by Abraham, Arpad / Carceles-Poveda , Eva / Debortoli, Davide / Lambertini, Luisa / Nimark, Kristoffer / Wang, Pengfei

2 Issues per year

IMPACT FACTOR 2017: 0.378
5-year IMPACT FACTOR: 0.462

CiteScore 2017: 0.62

SCImago Journal Rank (SJR) 2017: 0.553
Source Normalized Impact per Paper (SNIP) 2017: 0.605

See all formats and pricing
More options …

Robust learning in the foreign exchange market

Edouard Djeutem / Pierre Nguimkeu
Published Online: 2018-08-25 | DOI: https://doi.org/10.1515/bejm-2017-0117


This paper studies risk premia in the foreign exchange market when investors entertain multiple models for consumption growth. Investors confront two sources of uncertainty: (1) individual models might be misspecified, and (2) it is not known which of these potentially misspecified models is the best approximation to the actual data-generating process. Following Hansen and Sargent (Hansen, L. P., and T. J. Sargent. 2010. “Fragile Beliefs and the Price of Uncertainty.” Quantitative Economics 1 (1): 129–162.), agents formulate “robust” portfolio policies. These policies are implemented by applying two risk-sensitivity operators. One is forward-looking, and pessimistically distorts the state dynamics of each individual model. The other is backward-looking, and pessimistically distorts the probability weights assigned to each model. A robust learner assigns higher weights to worst-case models that yield lower continuation values. The magnitude of this distortion evolves over time in response to realized consumption growth. It is shown that robust learning not only explains unconditional risk premia in the foreign exchange market, it can also explain the dynamics of risk premia. In particular, an empirically plausible concern for model misspecification and model uncertainty generates a stochastic discount factor that uniformly satisfies the spectral Hansen-Jagannathan bound of Otrok et al. (Otrok, C., B. Ravikumar, and C. H. Whiteman. 2007. “A Generalized Volatility Bound for Dynamic Economies.” Journal of Monetary Economics 54 (8): 2269–2290.).

Keywords: dynamic of currency risk premium; model uncertainty; robust learning

JEL Classification: F31; D81


  • Alexius, A. 2001. “Uncovered Interest Parity Revisited.” Review of International Economics 9 (3): 505–517.CrossrefGoogle Scholar

  • Anderson, E. W., L. P. Hansen, and T. J. Sargent. 2003. “A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection.” Journal of the European Economic Association 1 (1): 68–123.CrossrefGoogle Scholar

  • Bansal, R., and I. Shaliastovich. 2013. “A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets.” Review of Financial Studies 26 (1): 1–33.Web of ScienceCrossrefGoogle Scholar

  • Bansal, R., and A. Yaron. 2004. “Risks for the Long-Run: A Potential Resolution of Asset Pricing Puzzles.” Journal of Finance 59: 1481–1509.CrossrefGoogle Scholar

  • Breeden, D. T., R. H. Litzenberger, and T. Jia. 2015a. “Consumption-Based Asset Pricing, Part 1: Classic Theory and Tests, Measurement Issues, and Limited Participation.” Annual Review of Financial Economics 7: 35–83.CrossrefWeb of ScienceGoogle Scholar

  • Breeden, D. T., R. H. Litzenberger, and T. Jia. 2015b. “Consumption-Based Asset Pricing, Part 2: Habit Formation, Conditional Risks, Long-Run Risks, and Rare Disasters.” Annual Review of Financial Economics 7: 85–131.CrossrefWeb of ScienceGoogle Scholar

  • Brennan, M. J., and Y. Xia. 2001. “Stock Price Volatility and Equity Premium.” Journal of monetary Economics 47 (2): 249–283.CrossrefGoogle Scholar

  • Chaboud, A. P., and J. H. Wright. 2005. “Uncovered Interest Parity: It Works, But Not for Long.” Journal of International Economics 66 (2): 349–362.CrossrefGoogle Scholar

  • Chinn, M. D. 2006. “The (Partial) Rehabilitation of Interest Rate Parity in the Floating Rate Era: Longer Horizons, Alternative Expectations, and Emerging Markets.” Journal of International Money and Finance 25 (1): 7–21.CrossrefGoogle Scholar

  • Colacito, R., and M. M. Croce. 2012. “International Robust Disagreement.” American Economic Review 102 (3): 152–155.Web of ScienceCrossrefGoogle Scholar

  • Djeutem, E. 2014. “Model Uncertainty and the Forward Premium Puzzle.” Journal of International Money and Finance 46: 16–40.Web of ScienceCrossrefGoogle Scholar

  • Djeutem, E., and K. Kasa. 2013. “Robustness and Exchange Rate Volatility.” Journal of International Economics 91 (1): 27–39.CrossrefWeb of ScienceGoogle Scholar

  • Dupuis, P., and R. S. Ellis. 1997. A Weak Convergence Approach to the Theory of Large Deviations. New York: Wiley-Interscience.Google Scholar

  • Epstein, L. G., and S. E. Zin. 1989. “Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework.” Econometrica 57 (4): 937–969.CrossrefGoogle Scholar

  • Gallager, R. G. 2014. Stochastic Processes: Theory for Applications. Cambridge, UK, New York: Cambridge University Press.Google Scholar

  • Gillman, M., M. Kejak, and M. Pakoš. 2015. “Learning About Rare Disasters: Implications for Consumption and Asset Prices*.” Review of Finance 19 (3): 1053–1104.Web of ScienceCrossrefGoogle Scholar

  • Hansen, L. P. 2014. “Nobel Lecture: Uncertainty Outside and Inside Economic Models.” Journal of Political Economy 122 (5): 945–987.Web of ScienceCrossrefGoogle Scholar

  • Hansen, L. P., and R. Jagannathan. 1991. “Implications of Security Market Data for Models of Dynamic Economies.” Journal of Political Economy 99 (2): 225–262.CrossrefGoogle Scholar

  • Hansen, L. P., and R. Jagannathan. 1997. “Assessing Specification Errors in Stochastic Discount Factor Models.” The Journal of Finance 52 (2): 557–590.CrossrefGoogle Scholar

  • Hansen, L. P., and T. J. Sargent. 2008. Robustness. Princeton, NJ: Princeton University Press.Google Scholar

  • Hansen, L. P., and T. J. Sargent. 2010. “Fragile Beliefs and the Price of Uncertainty.” Quantitative Economics 1 (1): 129–162.CrossrefWeb of ScienceGoogle Scholar

  • Hansen, L. P., and T. J. Sargent. 2011. “Chapter 20 – Wanting Robustness in Macroeconomics.” In Handbook of Monetary Economics, edited by Benjamin M. Friedman and Michael Woodford, Volume 3, 1097–1157. Amsterdam, The Nederlands: Elsevier.Google Scholar

  • Hansen, L. P., and T. J. Sargent. 2016. “Sets of Models and Prices of Uncertainty.” NBER Working Paper, No 22000.Google Scholar

  • Hnatkovska, V., A. Lahiri, and C. A. Vegh. 2013. “Interest Rate and the Exchange Rate: A Non-monotonic Tale.” European Economic Review 63: 68–93.Web of ScienceCrossrefGoogle Scholar

  • Ju, N., and J. Miao. 2012. “Ambiguity, Learning, and Asset Returns.” Econometrica 80 (2): 559–591.CrossrefWeb of ScienceGoogle Scholar

  • Karni, E., and M.-L. Vierø. 2013. ““Reverse Bayesianism”: A Choice-Based Theory of Growing Awareness.” American Economic Review 103 (7): 2790–2810.CrossrefWeb of ScienceGoogle Scholar

  • Lucas, R. E. 1978. “Asset Prices in an Exchange Economy.” Econometrica 46 (6): 1429–1445.CrossrefGoogle Scholar

  • Lucas, R. E. 1982. “Interest Rates and Currency Prices in a Two-Country World.” Journal of Monetary Economics 10 (3): 335–359.CrossrefGoogle Scholar

  • Ludvigson, S. C. 2013. “Advances in Consumption-Based Asset Pricing: Empirical Tests.” In Handbook of the Economics of Finance, vol. 2, 799–906. Amsterdam, The Nederlands: Elsevier.Google Scholar

  • Otrok, C., B. Ravikumar, and C. H. Whiteman. 2007. “A Generalized Volatility Bound for Dynamic Economies.” Journal of Monetary Economics 54 (8): 2269–2290.CrossrefGoogle Scholar

  • Raftery, A., M. Kárný, and P. Ettler. 2010. “Online Prediction Under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill.” Technometrics 52 (1): 52–66.Web of ScienceCrossrefGoogle Scholar

  • Taniguchi, M., and Y. Kakizawa. 2000. Asymptotic Theory of Statistical Inference for Time Series, 2000th edition. New York: Springer.Google Scholar

  • Timmermann, A. G. 1993. “How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices.” The Quarterly Journal of Economics 108 (4): 1135–1145.CrossrefGoogle Scholar

About the article

Published Online: 2018-08-25

Citation Information: The B.E. Journal of Macroeconomics, 20170117, ISSN (Online) 1935-1690, DOI: https://doi.org/10.1515/bejm-2017-0117.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in