Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The B.E. Journal of Theoretical Economics

Editor-in-Chief: Schipper, Burkhard

Ed. by Fong, Yuk-fai / Peeters, Ronald / Puzzello , Daniela / Rivas, Javier / Wenzelburger, Jan


IMPACT FACTOR 2018: 0.173
5-year IMPACT FACTOR: 0.248

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.163
Source Normalized Impact per Paper (SNIP) 2018: 0.186

Mathematical Citation Quotient (MCQ) 2018: 0.08

Online
ISSN
1935-1704
See all formats and pricing
More options …

Public Good Indices for Games with Several Levels of Approval

Sébastien CourtinORCID iD: https://orcid.org/0000-0003-3008-181X / Bertrand Tchantcho
Published Online: 2019-10-08 | DOI: https://doi.org/10.1515/bejte-2019-0068

Abstract

This work focuses on (j, 2) games in which there are several levels of approval in the input, i. e. games with n players, j ordered qualitative alternatives in the input level and 2 possible ordered quantitative alternatives in the output. When considering (j, 2) games, we extend the Public Good index (PGI), the Null Player Free index (NPFI) and the Shift index (SI) and provide full characterizations of these extensions.

Keywords: (j, 2) games; shift index; public good index; null player free index

JEL Classification: C71; D71

References

  • Alonso-Meijide, J. M., and J. Freixas. 2010. “A New Power Index Based on Minimal Winning Coalitions Without any Surplus.” Decision Support System 49: 70–76.CrossrefGoogle Scholar

  • Alonso-Meijide, J. M., B. Casas-Méndez, M. J. Holler, and S. Lorenzo-Freire. 2008. “Computing Power Indices: Multilinear Extensions and New Characterizations.” European Journal of Operational Research 188: 540–54.Web of ScienceCrossrefGoogle Scholar

  • Alonso-Meijide, J. M., B. Casas-Méndez, G. Fiestras-Janeiro, M. J. Holler, and A. Nohn. 2010. “Axiomatizations of Public Good Indices with a Priori Unions.” Social Choice and Welfare 35: 517–33.Web of ScienceCrossrefGoogle Scholar

  • Alonso-Meijide, J. M., M. Álvarez-Mozos, F. Ferreira, and A. Pinto. 2011. “Two New Power Indices Based on Winning Coalitions.” Journal of Difference Equations and Applications 17: 1095–100.Web of ScienceCrossrefGoogle Scholar

  • Álvarez-Mozos, M. 2012. “Essays on Cooperative Games with Restricted Cooperative and Simple Games.” PhD Thesis, University of Santiago de Compostela, Spain.Google Scholar

  • Andjiga, N., F. Chantreuil, and D. Lepelley. 2003. “La mesure du pouvoir de vote.” Mathematiques et Sciences Humaines 163: 111–45.Google Scholar

  • Banzhaf, J. F. 1965. “Weighted Voting Doesn’t Work: A Mathematical Analysis.” Rutgers Law Review 19: 317–43.Google Scholar

  • Barry, B. 1980. “Is it Better to be Powerful or Lucky: Part I and Part II. Political Studies 28: 183–94 and 338–52.Google Scholar

  • Courtin, S., Z. Nganmeni, and B. Tchantcho. 2016. “The Shapley-Shubik Power Index for Dichotomous Multi-type Games.” Theory and Decision 81: 413–26.Web of ScienceCrossrefGoogle Scholar

  • Courtin, S., Z. Nganmeni, and B. Tchantcho. 2017. “Dichotomous Multi-type Games with a Coalition Structure.” Mathematical Social Sciences 86: 9–17.Web of ScienceCrossrefGoogle Scholar

  • Deegan, J., and E. W. Packel. 1978. “A New Index of Power for Simple n-Person Games.” International Journal of Game Theory 7: 113–23.CrossrefGoogle Scholar

  • Freixas, J. 2005a. “The Banzhaf Index for Games with Several Levels of Approval in the Input and Output.” Annals of Operations Research 137: 45–66.CrossrefGoogle Scholar

  • Freixas, J. 2005b. “The Shapley Shubik Power Index for Games with Several Levels of Approval in the Input and Output.” Decision Support Systems 39: 185–95.CrossrefGoogle Scholar

  • Freixas, J., and W. S. Zwicker. 2003a. “Weighted Voting, Abstention, and Multiple Levels of Approval.” Social Choice and Welfare 21: 399–431.CrossrefGoogle Scholar

  • Freixas, J., and W. S. Zwicker. 2003b. “Weighted Voting, Abstention, and Multiple Levels of Approval.” Social Choice and Welfare 21: 399–431.CrossrefGoogle Scholar

  • M. J. Holler. 1982. “Forming Coalitions and Measuring Voting Power.” Political Studies 30: 262–71.CrossrefGoogle Scholar

  • Holler, M. J., and E. W. Packel. 1983. “Power, Luck and the Right Index.” Journal of Economics 43: 21–29.Google Scholar

  • Isbell, J. R. 1958. “A Class of Simple Games.” Duke Mathematical Journal 25: 423–39.CrossrefGoogle Scholar

  • Laruelle, A., and F. Valenciano. 2008. Voting and Collective Decision-Making, 1st ed. Cambridge: Cambridge University Press.Google Scholar

  • Pongou, R., B. Tchantcho, and L. Diffo Lambo. 2011. “Political Influence in Multi-choice Institutions: Cyclicity, Anonymity, and Transitivity.” Theory and Decision 70: 157–78.CrossrefWeb of ScienceGoogle Scholar

  • Pongou, R., B. Tchantcho, and L. Tedjeugang. 2014. “Power Theories for Multi-choice Organizations and Political Rules: Rank-order Equivalence.” Operations Research Perspectives 1: 42–49.CrossrefGoogle Scholar

  • Pongou, R., B. Tchantcho, J. S Zwicker, and N. Tedjeugang. 2017. “Properties of Ladder Tournaments.” European Journal of Operational Research 263: 203–13.Web of ScienceCrossrefGoogle Scholar

  • W. H. Riker. 1982. “Theory of Political Coalitions.” Journal Studies 30: 262–71.Google Scholar

  • L. S. Shapley, and M. Shubik. 1954. “A Model for Evaluating the Distribution of Power in a Committee System.” Rutgers Law Review 48: 787–92.Google Scholar

  • Tchantcho, B., L. Diffo Lambo, and R. Pongou. 2008. “Voters’ Power in Voting Games with Abstention: Influence Relation and Ordinal Equivalence of Power Theories.” Games and Economic Behavior 64: 335–50.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2019-10-08


Citation Information: The B.E. Journal of Theoretical Economics, Volume 20, Issue 1, 20190068, ISSN (Online) 1935-1704, DOI: https://doi.org/10.1515/bejte-2019-0068.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in