Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The B.E. Journal of Theoretical Economics

Editor-in-Chief: Schipper, Burkhard

Ed. by Fong, Yuk-fai / Peeters, Ronald / Puzzello , Daniela / Rivas, Javier / Wenzelburger, Jan

2 Issues per year


IMPACT FACTOR 2017: 0.220
5-year IMPACT FACTOR: 0.328

CiteScore 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.181
Source Normalized Impact per Paper (SNIP) 2017: 0.459

Mathematical Citation Quotient (MCQ) 2017: 0.09

Online
ISSN
1935-1704
See all formats and pricing
More options …

On the Openness of Unique Pure-Strategy Nash Equilibrium

Anna A. KlisORCID iD: http://orcid.org/0000-0001-5684-2870
Published Online: 2018-01-04 | DOI: https://doi.org/10.1515/bejte-2017-0065

Abstract

This paper investigates whether small perturbations to a game with continuous strategy spaces and unique Nash equilibrium also yields a game with unique equilibrium. The answer is affirmative for games with smooth payoffs, differentiable strict concavity in own actions, and transversal intersection of best response curves. Though intuitive for games with unique interior equilibrium, this result holds even for equilibria at the boundaries of strategy sets.

Keywords: unique Nash equilibrium; pure strategies; open condition; differentiable strict concavity; transversal; game theory; univalence

References

  • Alós-Ferrer, C., and A. B. Ania. 2001. “Local equilibria in economic games.” Economics Letters 70 (2):165–173.CrossrefGoogle Scholar

  • Amir, R. 2005. “Supermodularity and complementarity in economics: An elementary survey.” Southern Economic Journal 71 (January 2004): 636–660.CrossrefGoogle Scholar

  • Anderson, R. M., and W. R. Zame. 2000. “Genericity with infinitely many parameters.” Advances in Theoretical Economics 1:1–62.Google Scholar

  • Bergstrom, T., Blume L., and H. R. Varian. 1986. “On the private provision of public goods.” Journal of Public Economics 29:25–49.Web of ScienceCrossrefGoogle Scholar

  • Brock, W. A., and A. de Zeeuw. 2002. “The repeated lake game.” Economics Letters 76 (1): 109–114.CrossrefGoogle Scholar

  • Cheney, W. (2001). “Calculus in Banach spaces.” In Analysis for Applied Mathematics, Volume 208 of Graduate Texts in Mathematics, 115–169. New York, NY: Springer New York.Google Scholar

  • Cho, I.-K., and D. M. Kreps. 1987. “Signaling games and stable equilibria.” The Quarterly Journal of Economics 102 (2):179–222.CrossrefGoogle Scholar

  • Collard-Wexler, A, G Gowrisankaran, and R. S. Lee. “Nash-in-Nash” bargaining: A microfoundation for applied work. National Bureau of Economic Research Working Paper Series 2014.

  • Fraser, C. D. 2012. “Nash equilibrium existence and uniqueness in a club model.” Economics Letters 117 (2):496–499.CrossrefWeb of ScienceGoogle Scholar

  • Gale, D., and H. Nikaidô. (1965). “The Jacobian matrix and global univalence of mappings.” Mathematische Annalen 159 (2):81–93.CrossrefGoogle Scholar

  • Harsanyi, J. C. 1973a. “Games with randomly distributed payoffs: A new rationale for mixed-strategy equilibrium points.” International Journal of Game Theory 2 (1):1–23.CrossrefGoogle Scholar

  • Harsanyi, J. C. 1973b. “Oddness of the number of equilibrium points: A new proof.” International Journal of Game Theory 2 (1):235–250.CrossrefGoogle Scholar

  • Hogan, S. D. 2011. “A new existence and uniqueness theorem for continuous games.” The B.E. Journal of Theoretical Economics: Contributions 11 (2):148–151.Google Scholar

  • Horn, H., and A. Wolinsky. 1988. “Bilateral monopolies and incentives for merger.” The RAND Journal of Economics 19 (3):408–419.CrossrefGoogle Scholar

  • Kohlberg, E., and J.-F. Mertens. 1986. “On the strategic stability of equilibria.” Econometrica 54 (5):1003–1037.CrossrefGoogle Scholar

  • Kojima, M., Okada A., and S. Shindoh. 1985. “Strongly stable equilibrium points of n-person noncooperative games.” Mathematics of Operations Research 10 (4):650–663.CrossrefGoogle Scholar

  • Kotchen, M. J. 2007. “Equilibrium existence and uniqueness in impure public good models.” Economics Letters 97 (2):91–96.CrossrefGoogle Scholar

  • Leoni, G. 2009. A first course in Sobolev spaces, Volume 105. American Mathematical Society Providence, RI.Google Scholar

  • Lu, H. 2007. “On the existence of pure-strategy Nash equilibrium.” Economics Letters 94 (3):459–462.CrossrefGoogle Scholar

  • Ritzberger, K. 1994. “The theory of normal form games from the differentiable viewpoint.” International Journal of Game Theory 23 (3):207–236.CrossrefGoogle Scholar

  • Smith, J. E., and K. F. McCardle. 2002, oct. “Structural properties of stochastic dynamic programs.” Operations Research 50 (5):796–809.CrossrefGoogle Scholar

  • van Damme, E. 1991. Stability and Perfection of Nash Equilibria (2nd ed.). Berlin Heidelberg: Springer-Verlag.

  • Viossat, Y. 2008. “Is having a unique equilibrium robust?” Journal of Mathematical Economics 44 (11):1152–1160.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2018-01-04


Citation Information: The B.E. Journal of Theoretical Economics, 20170065, ISSN (Online) 1935-1704, DOI: https://doi.org/10.1515/bejte-2017-0065.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in