Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The B.E. Journal of Theoretical Economics

Editor-in-Chief: Schipper, Burkhard

Ed. by Fong, Yuk-fai / Peeters, Ronald / Puzzello , Daniela / Rivas, Javier / Wenzelburger, Jan


IMPACT FACTOR 2017: 0.220
5-year IMPACT FACTOR: 0.328

CiteScore 2017: 0.28

SCImago Journal Rank (SJR) 2017: 0.181
Source Normalized Impact per Paper (SNIP) 2017: 0.459

Mathematical Citation Quotient (MCQ) 2017: 0.09

Online
ISSN
1935-1704
See all formats and pricing
More options …

Stable Matching with Double Infinity of Workers and Firms

Matías Fuentes
  • Corresponding author
  • UNSAM, Centro de Investigación en Economía Teórica y Matemática Aplicada EEyN, Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Tohmé
Published Online: 2018-12-05 | DOI: https://doi.org/10.1515/bejte-2018-0015

Abstract

In this paper we analyze the existence of stable matchings in a two-sided large market in which workers are assigned to firms. The market has a continuum of workers while the set of firms is countably infinite. We show that, under certain reasonable assumptions on the preference correspondences, stable matchings not only exist but are also Pareto optimal.

Keywords: double infinity; matchings; efficiency; asymptotic stability; topological Duality

JEL Classification: C71; C78

References

  • Azevedo, E., and J. Leshno. 2016. “A Supply and Demand Framework for Two-Sided Matching Markets.” Journal of Political Economy 124: 1235–1268.CrossrefWeb of ScienceGoogle Scholar

  • Blair, C. 1988. “The Lattice Structure of the Set of Stable Matching with Multiple Partners”. Mathematics of Operations Research 13: 619–628.CrossrefGoogle Scholar

  • Che, Y.-K., J. Kim, and F. Kojima. forthcoming. “Stable Matching in Large Economies”. Econometrica.Google Scholar

  • Debreu, G. 1959. Theory of Value. New Haven: Cowles Foundation Monographs Series.Google Scholar

  • Dunford, N., and J. Schwartz. 1958. Linear Operators. Part I. New York: Interscience.Google Scholar

  • Echenique, F., and J. Pereyra. 2016. “Strategic Complementarities and Unraveling in Matching Markets.” Theoretical Economics 11: 1–39.CrossrefWeb of ScienceGoogle Scholar

  • Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences: “Scientific Background Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012: Stable Allocations and the Practice of Market Design.” http://www. nobelprize.org/nobel\_prizes/economic-sciences/laureates/2012/advanced-economicsciences2012.pdf.

  • Gale, D., and L. Shapley. 1962. “ College Admissions and the Stability of Marriage”. American Mathematical Monthly 69: 9–15.CrossrefWeb of ScienceGoogle Scholar

  • Gretsky, N., J. Ostroy, and W. Zame. 1992. “The Nonatomic Assignment Model”. Economic Theory 2: 103–127.CrossrefGoogle Scholar

  • Gretsky, N., J. Ostroy, and W. Zame. 1999. “Perfect Competition in the Continuous Assignment Model.” Journal of Economic Theory 88: 60–118.CrossrefGoogle Scholar

  • Hart, S., W. Hildenbrand, and E. Kohlberg. 1974. ““On Equilibrium Allocations as Distributions on the Commodity Space".” Journal of Mathematical Economics 1: 159–166.CrossrefGoogle Scholar

  • Hatfield, J., and S. Kominers. 2015. “Multilateral Matching.” Journal of Economic Theory 156: 175–206.CrossrefWeb of ScienceGoogle Scholar

  • Hatfield, J., and P. Milgrom. 2005. “Matching with Contracts.” American Economic Review 95: 913–935.CrossrefGoogle Scholar

  • Kaneko, M., and M. Wooders. 1986. “The Core of a Game with a Continuum of Players and Finite Coalitions: The Model and Some Results.” Mathematical Social Sciences 12: 105–137.CrossrefGoogle Scholar

  • Kaneko, M., and M. Wooders. 1996. “The Nonemptiness of the f -Core of a Game Without Side Payments.” International Journal of Game Theory 25: 245–258.CrossrefGoogle Scholar

  • Kelly, J. 1955. General Topology. New York: Van Nostrand.Google Scholar

  • Kojima, F., and M. Ünver. 2014. “The ‘Boston’ School-choice Mechanism: an Axiomatic Approach.” Economic Theory 55: 515–544.Web of ScienceCrossrefGoogle Scholar

  • Mas-Colell, A., and W. Zame. 1991 “Equilibrium Theory in Infinite Dimensional Spaces”. In Handbook of Mathematical Economics, vol. IV, edited by W. Hildenbrand, H. Sonnenschein, 1836–1898. Amsterdam: North-Holland.Google Scholar

  • Nöldeke, G., and L. Samuelson. 2017 “The implementation duality”. Cowles Foundation Discussion Paper No. 1993R.Google Scholar

  • Roth, A. 1984. “The Evolution of the Labor Market for Medical Interns and Residents: a Case Study in Game Theory.” Journal of Political Economy 92: 991–1016.CrossrefGoogle Scholar

  • Rudin, W. 1991. Functional Analysis. Boston MA: McGraw-Hill.Google Scholar

  • Schaefer, H. H., and M. P. Wolf. 1999. Topological Vector Spaces, 2nd ed. New York and Berlin: Springer-Verlag.

  • Sönmez, T., and M. Ünver. 2011. “Matching, Allocation, and Exchange of Discrete Resources.” In Handbook of Social Economics, edited by J. Benhabib, A. Bisin, and M. Jackson. Amsterdam: North-Holland.

About the article

Published Online: 2018-12-05


Citation Information: The B.E. Journal of Theoretical Economics, 20180015, ISSN (Online) 1935-1704, DOI: https://doi.org/10.1515/bejte-2018-0015.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in