Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal !

Biofuels Engineering

1 Issue per year

Open Access
See all formats and pricing
More options …

A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation

Hamid Mahmoudi
  • Department of Mechanical Engineering, School of Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maedeh Mahmoudi
  • Department of Mechanical Engineering, School of Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omid Doustdar
  • Department of Mechanical Engineering, School of Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hessam Jahangiri
  • Cranfield University, White Building, Cranfield, Bedfordshire, MK43 0AL, UK
  • European Bioenergy Research Institute (EBRI), Aston University, The Aston Triangle, Birmingham, B4 7ET, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Athanasios Tsolakis
  • Department of Mechanical Engineering, School of Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sai Gu
  • Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guilford, GU2 7XH, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslaw LechWyszynski
  • Corresponding author
  • Department of Mechanical Engineering, School of Engineering, College of Engineering and Physical Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/bfuel-2017-0002


For more than half a century, Fischer-Tropsch synthesis (FTS) of liquid hydrocarbons was a technology of great potential for the indirect liquefaction of solid or gaseous carbon-based energy sources (Coal-To-Liquid (CTL) and Gas-To-Liquid (GTL)) into liquid transportable fuels. In contrast with the past, nowadays transport fuels are mainly produced from crude oil and there is not considerable diversity in their variety. Due to some limitations in the first generation bio-fuels, the Second-Generation Biofuels (SGB)’ technology was developed to perform the Biomass-To-Liquid (BTL) process. The BTL is awell-known multi-step process to convert the carbonaceous feedstock (biomass) into liquid fuels via FTS technology. This paper presents a brief history of FTS technology used to convert coal into liquid hydrocarbons; the significance of bioenergy and SGB are discussed aswell. The paper covers the characteristics of biomass, which is used as feedstock in the BTL process. Different mechanisms in the FTS process to describe carbon monoxide hydrogenation aswell as surface polymerization reaction are discussed widely in this paper. The discussed mechanisms consist of carbide, CO-insertion and the hydroxycarbene mechanism. The surface chemistry of silica support is discussed. Silanol functional groups in silicon chemistry are explained extensively. The catalyst formulation in the Fischer Tropsch (F-T) process as well as F-T reaction engineering is discussed. In addition, the most common catalysts are introduced and the current reactor technologies in the F-T indirect liquefaction process are considered.

Keywords : Fischer Tropsch; Silica; Cobalt catalyst; fixed bed reactor; bio-fuel and biomass


  • [1] IMechE, Climate change adapting to the inevitable? . Institution of Mechanical Engineering, 2013: p. 30.Google Scholar

  • [2] E.I.A, International Energy Outlook with projection to 2040. United States Energy Information Administration, 2013: p. 312.Google Scholar

  • [3] N. Moazami, et al., Mathematical Modeling and Performance Study of Fischer-tropsch Synthesis of Liquid Fuel over Cobaltsilica. Energy Procedia, 2015. 75: p. 62-71.Google Scholar

  • [4] S. Czernik and A. Bridgwater, Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 2004. 18(2): p. 590-598.CrossrefGoogle Scholar

  • [5] O. Doustdar, M.L.Wyszynski, H.Mahmoudi, and A. Tsolakis, Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value, in IOP Conference Series: Materials Science and Engineering. 2016. p. 012092.Google Scholar

  • [6] Hessam Jahangiri, James Bennett, Parvin Mahjoubi, Karen Wilson, and S. Gu, A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. The Royal Society of Chemistry, 2014.Google Scholar

  • [7] N. Moazami, et al., Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2: Hydrocarbon production. Fuel, 2015. 154: p. 140-151.Google Scholar

  • [8] A.N. Stranges, A history of the fischer-tropsch synthesis in Germany 1926-45. Studies in surface science and catalysis, 2007: p. 1-27.Google Scholar

  • [9] H. Mahmoudi, Perfomance of cobalt-based eggshell catalyst in low temperature Fischer tropsch synthesis process to produce long-chain hydrocarbons from synthesis gas utilizing fixed-bed reactor technology, in School of Mechanical Engineering. 2015, The University of Birmingham.Google Scholar

  • [10] J. Perritano. Top 10 Advantages of Biofuels. [cited 2014; Available from: http://www.howstuffworks.com/.Google Scholar

  • [11] A. Murugesan, C. Umarani, R. Subramanian, and N. Nedunchezhian, Bio-diesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews, 2009. 13(3): p. 653-662.CrossrefGoogle Scholar

  • [12] S. Gill, A. Tsolakis, K. Dearn, and J. Rodríguez-Fernández, Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 2011. 37(4): p. 503-523.CrossrefGoogle Scholar

  • [13] M. Lapuerta, O. Armas, J.J. Hernández, and A. Tsolakis, Potential for reducing emissions in a diesel engine by fuelling with conventional biodiesel and Fischer-Tropsch diesel. Fuel, 2010. 89(10): p. 3106-3113.Google Scholar

  • [14] Y.H. Kim, K.-W. Jun, H. Joo, C. Han, and I.K. Song, A simulation study on gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process optimization. Chemical Engineering Journal, 2009. 155(1): p. 427-432.Google Scholar

  • [15] X. Li, Z. Huang, J. Wang, and W. Zhang, Particle size distribution from a GTL engine. Science of the total environment, 2007. 382(2): p. 295-303.Google Scholar

  • [16] DECC. Reducing the UK’s greenhouse gas emissions by 80% by 2050. 2014 [cited 2014 20 May]; Available from: www.gov.ukGoogle Scholar

  • [17] JNCC, The global biodiversity footprint of UK biofuel consumption. Joint Nature Conservation Committee, 2009: p. 40.Google Scholar

  • [18] J. Runyon. 2011 Outlook for Clean Energy Jobs in the U.S. - Beating the Trend. 2010 November 12 [cited 2014 20 May]; Available from: www. renewableenergyworld.comGoogle Scholar

  • [19] P. Basu, Biomass gasification and pyrolysis: practical design and theory. 2010: Academic press.Google Scholar

  • [20] DECC, Use of UK biomass for electricity and CHP. Department of Energy and Climate Change, 2013: p. 9.Google Scholar

  • [21] M.H. Rafiq, H.A. Jakobsen, R. Schmid, and J.E. Hustad, Experimental studies and modeling of a fixed bed reactor for Fischer-Tropsch synthesis using biosyngas. Fuel processing technology, 2011. 92(5): p. 893-907.Google Scholar

  • [22] G.P. van der Laan, Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis. 1999: [University Library Groningen][Host].Google Scholar

  • [23] X. Wang and M. Economides, Advanced Natural Gas Engineering. 2013: Elsevier.Google Scholar

  • [24] B.H. Davis, Fischer-Tropsch synthesis: current mechanism and futuristic needs. Fuel Processing Technology, 2001. 71(1): p. 157-166.Google Scholar

  • [25] H. Taylor, Catalysis. Volume IV. Hydrocarbon Synthesis, Hydrogenation and Cyclization. Journal of the American Chemical Society, 1957. 79(3): p. 760-760.CrossrefGoogle Scholar

  • [26] A. de Klerk, Fischer-Tropsch Refining. 2012: John Wiley & Sons.Google Scholar

  • [27] R.B. Anderson, H. Kölbel, and M. Ralek, The Fischer-Tropsch Synthesis. Vol. 16. 1984: Academic Press New York.Google Scholar

  • [28] G.H. Olivé and S. Olive, The chemistry of the catalyzed hydrogenation of carbon monoxide. Springer, Berlin, 1984. 143: p. 176.Google Scholar

  • [29] J. Yang, W. Ma, D. Chen, A. Holmen, and B.H. Davis, Fischer- Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Applied Catalysis A: General, 2014. 470: p. 250-260.Google Scholar

  • [30] A. Raje, J.R. Inga, and B.H. Davis, Fischer-Tropsch synthesis: process considerations based on performance of iron-based catalysts. Fuel, 1997. 76(3): p. 273-280.CrossrefGoogle Scholar

  • [31] N. Moazami, et al., Catalytic performance of cobalt-silica catalyst for Fischer-Tropsch synthesis: Effects of reaction rates on efficiency of liquid synthesis. Chemical Engineering Science, 2015. 134: p. 374-384.Google Scholar

  • [32] S. Storsæter, D. Chen, and A. Holmen, Microkinetic modelling of the formation of C< sub> 1</sub> and C< sub> 2</sub> products in the Fischer-Tropsch synthesis over cobalt catalysts. Surface science, 2006. 600(10): p. 2051-2063.Google Scholar

  • [33] M. Kollár, et al., The mechanism of the Fischer-Tropsch reaction over supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical, 2010. 333(1): p. 37-45.Google Scholar

  • [34] J. Yang, et al., Reaction mechanism of CO activation and methane formation on Co Fischer-Tropsch catalyst: a combined DFT, transient, and steady-state kinetic modeling. Journal of Catalysis, 2013. 308: p. 37-49.Google Scholar

  • [35] C.K. Rofer-DePoorter, A comprehensive mechanism for the Fischer-Tropsch synthesis. Chemical Reviews, 1981. 81(5): p. 447-474.CrossrefGoogle Scholar

  • [36] E.F. Vansant, P. Van Der Voort, and K.C. Vrancken, Characterization and chemical modification of the silica surface. 1995: Elsevier.Google Scholar

  • [37] L. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 173(1): p. 1-38.Google Scholar

  • [38] D. Michel, V. Kazansky, and V. Andreev, Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy. Surface Science, 1978. 72(2): p. 342-356.Google Scholar

  • [39] N. Sheppard, Some studies of physical and chemical adsorption by means of infra-red spectroscopy. Chimie Pure Et Appliquée, 1962. 4: p. 71.Google Scholar

  • [40] V.Y. Davydov, A. Kiselev, and L. Zhuravlev, Study of the surface and bulk hydroxyl groups of silica by infra-red spectra and D2O-exchange. Transactions of the Faraday Society, 1964. 60: p. 2254-2264.CrossrefGoogle Scholar

  • [41] H.E. Bergna, The Colloid Chemistry of Silica. Advances in Chemistry Series 234, ed. M.J. Comstock. Vol. 234. 1994,Washington, DC: American Chemical Society. 669.Google Scholar

  • [42] J. Peri and A. Hensley Jr, The surface structure of silica gel. The Journal of Physical Chemistry, 1968. 72(8): p. 2926-2933.Google Scholar

  • [43] B. Morrow and A. McFarlan, Chemical reactions at silica surfaces. Journal of non-crystalline solids, 1990. 120(1): p. 61-71.Google Scholar

  • [44] L. Zhuravlev, Structurally bound water and surface characterization of amorphous silica. Pure Appl Chem, 1989. 61: p. 1969-1976.CrossrefGoogle Scholar

  • [45] J. Nawrocki, The silanol group and its role in liquid chromatography. Journal of Chromatography A, 1997. 779(1): p. 29-71.Google Scholar

  • [46] K. Unger, K. Lork, B. Pfleiderer, K. Albert, and E. Bayer, Impact of acidic/hydrothermal treatment on pore structural and chromatographic properties of porous silicas: I. The conventional approach. Journal of Chromatography A, 1991. 556(1): p. 395-406.Google Scholar

  • [47] V.M. Bermudez, Proton nuclear magnetic resonance technique for determining the surface hydroxyl content of hydrated silica gel. The Journal of Physical Chemistry, 1970. 74(23): p. 4160-4161.CrossrefGoogle Scholar

  • [48] M.L. Hair, Hydroxyl groups on silica surface. Journal of Non-Crystalline Solids, 1975. 19: p. 299-309.CrossrefGoogle Scholar

  • [49] P. Der Voort, Modelling of the hydroxyl group population using an energetic analysis of the temperature-programmed desorption of pyridine from silica gel. Journal of the Chemical Society, Faraday Transactions, 1992. 88(5): p. 723-727.Google Scholar

  • [50] I.-S. Chuang and G.E.Maciel, A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. The Journal of Physical Chemistry B, 1997. 101(16): p. 3052-3064.Google Scholar

  • [51] M.E. Dry, Catalytic aspects of industrial Fischer-Tropsch synthesis. Journal of Molecular Catalysis, 1982. 17(2-3): p. 133-144.CrossrefGoogle Scholar

  • [52] E. van Steen and M. Claeys, Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process. Chemical engineering & technology, 2008. 31(5): p. 655-666.Google Scholar

  • [53] R. Guettel, U. Kunz, and T. Turek, Reactors for Fischer-Tropsch Synthesis. Chemical Engineering & Technology, 2008. 31(5): p. 746-754.CrossrefGoogle Scholar

  • [54] C. Perego, R. Bortolo, and R. Zennaro, Gas to liquids technologies for natural gas reserves valorization: The Eni experience. Catalysis Today, 2009. 142(1): p. 9-16.Google Scholar

  • [55] W.C. Content, PetroleumTechnology, vol. 2. 2007,Wiley&Sons, Hoboken, NJ.Google Scholar

  • [56] A.Y. Khodakov, A. Griboval-Constant, R. Bechara, and V.L. Zholobenko, Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. Journal of Catalysis, 2002. 206(2): p. 230-241.Google Scholar

  • [57] Y.-N. Wang, Y.-Y. Xu, H.-W. Xiang, Y.-W. Li, and B.-J. Zhang, Modeling of catalyst pellets for Fischer-Tropsch synthesis. Industrial & engineering chemistry research, 2001. 40(20): p. 4324-4335.Google Scholar

  • [58] Z. Qu, et al., Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. Journal of Catalysis, 2005. 234(1): p. 33-36.Google Scholar

  • [59] A. Saib, M. Claeys, and E. Van Steen, Silica supported cobalt Fischer-Tropsch catalysts: effect of pore diameter of support. Catalysis today, 2002. 71(3): p. 395-402.Google Scholar

  • [60] B.C. Dunn, et al., Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2005. 278(2): p. 233-238.Google Scholar

  • [61] E. Peluso, C. Galarraga, and H. De Lasa, Eggshell catalyst in Fischer-Tropsch synthesis: Intrinsic reaction kinetics. Chemical engineering science, 2001. 56(4): p. 1239-1245.Google Scholar

  • [62] K. Triantafyllidis, A. Lappas, and M. Stöcker, The Role of Catalysis for the Sustainable Production of Bio-fuels and Biochemicals. 2013: Newnes.Google Scholar

  • [63] S.A. Gardezi, J.T. Wolan, and B. Joseph, Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO<sub> 2</sub> catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2012. 447: p. 151-163.Google Scholar

  • [64] D. Song and J. Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts. Journal ofMolecular Catalysis A: Chemical, 2006. 247(1): p. 206-212.Google Scholar

  • [65] J.-S. Girardon, et al., Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts. Journal of Catalysis, 2005. 230(2): p. 339-352.Google Scholar

  • [66] Y. Zhang, Y. Liu, G. Yang, S. Sun, and N. Tsubaki, Effects of impregnation solvent on Co/SiO2 catalyst for Fischer-Tropsch synthesis: A highly active and stable catalyst with bimodal sized cobalt particles. Applied Catalysis A: General, 2007. 321(1): p. 79-85.Google Scholar

  • [67] J.-S. Jung, S.W. Kim, and D.J. Moon, Fischer-Tropsch Synthesis over cobalt based catalyst supported on different mesoporous silica. Catalysis Today, 2012. 185(1): p. 168-174.Google Scholar

  • [68] A.M. Venezia, et al., Co/SiO2 catalysts for Fischer-Tropsch synthesis; effect of Co loading and support modification by TiO2. Catalysis Today, 2012. 197(1): p. 18-23.Google Scholar

  • [69] S. Sun, N. Tsubaki, and K. Fujimoto, The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts. Applied Catalysis A: General, 2000. 202(1): p. 121-131.Google Scholar

  • [70] Y. Zhang, Y. Liu, G. Yang, Y. Endo, and N. Tsubaki, The solvent effects during preparation of Fischer-Tropsch synthesis catalysts: Improvement of reducibility, dispersion of supported cobalt and stability of catalyst. Catalysis Today, 2009. 142(1): p. 85-89.Google Scholar

  • [71] H. Ming, B.G. Baker, and M. Jasieniak, Characterization of cobalt Fischer-Tropsch catalysts: 2. Rare earth-promoted cobalt-silica gel catalysts prepared by wet impregnation. Applied Catalysis A: General, 2010. 381(1): p. 216-225.Google Scholar

  • [72] A. Jess and C. Kern, Modeling of Multi-Tubular Reactors for Fischer-Tropsch Synthesis. Chemical engineering & technology, 2009. 32(8): p. 1164-1175.Google Scholar

  • [73] J.H. Yang, et al., Mass transfer limitations on fixed-bed reactor for Fischer-Tropsch synthesis. Fuel Processing Technology, 2010. 91(3): p. 285-289.Google Scholar

  • [74] S. Chambrey, et al., Fischer-Tropsch synthesis in milli-fixed bed reactor: Comparison with centimetric fixed bed and slurry stirred tank reactors. Catalysis Today, 2011. 171(1): p. 201-206.Google Scholar

  • [75] A. Jess, R. Popp, and K. Hedden, Fischer-Tropsch-synthesis with nitrogen-rich syngas: fundamentals and reactor design aspects. Applied Catalysis A: General, 1999. 186(1): p. 321-342.Google Scholar

  • [76] C.N. Satterfield, G.A. Huff Jr, H.G. Stenger, J.L. Carter, and R.J. Madon, A comparison of Fischer-Tropsch synthesis in a fixed-bed reactor and in a slurry reactor. Industrial & engineering chemistry fundamentals, 1985. 24(4): p. 450-454.Google Scholar

  • [77] O. González, et al., Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis. Catalysis Today, 2009. 148(1-2): p. 140-147.Google Scholar

  • [78] N. Osakoo, R. Henkel, S. Loiha, F. Roessner, and J. Wittayakun, Palladium-promoted cobalt catalysts supported on silica prepared by impregnation and reverse micelle for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2013. 464-465(0): p. 269-280.Google Scholar

  • [79] H. Wu, et al., Effect of TiO2 promotion on the structure and performance of silica-supported cobalt-based catalysts for Fischer-Tropsch synthesis. Journal of Molecular Catalysis A: Chemical, 2014. 390(0): p. 52-62.Google Scholar

  • [80] A.Y. Khodakov, R. Bechara, and A. Griboval-Constant, Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Applied Catalysis A: General, 2003. 254(2): p. 273-288.Google Scholar

  • [81] W. Ma, et al., Fischer-Tropsch synthesis: Support and cobalt cluster size effects on kinetics over Co/Al2O3 and Co/SiO2 catalysts. Fuel, 2011. 90(2): p. 756-765.CrossrefGoogle Scholar

  • [82] J. Hong, et al., Impact of sorbitol addition on the structure and performance of silica-supported cobalt catalysts for Fischer-Tropsch synthesis. Catalysis Today, 2011. 175(1): p. 528-533.Google Scholar

  • [83] M.K. Gnanamani, G. Jacobs, W.D. Shafer, and B.H. Davis, Fischer-Tropsch synthesis: Activity of metallic phases of cobalt supported on silica. Catalysis Today, 2013. 215(0): p. 13-17.Google Scholar

  • [84] J. van de Loosdrecht, et al., Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catalysis Today, 2007. 123(1-4): p. 293-302.Google Scholar

  • [85] S. Storsæter, B. Tøtdal, J.C. Walmsley, B.S. Tanem, and A. Holmen, Characterization of alumina-, silica-, and titaniasupported cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 2005. 236(1): p. 139-152.Google Scholar

  • [86] P. Hunpinyo, et al., A comprehensive small and pilot fixed bed reactor approach for testing Fischer-Tropsch catalyst activity and performance on BTL route. Arabian Journal of Chemistry, (0).Google Scholar

  • [87] N.O. Elbashir, B. Bao, and M.M. El-Halwagi, An Approach to the Design of Advanced Fischer-Tropsch Reactor for Operation in Near-Critical and Supercritical Phase Media, in Proceedings of the 1st Annual Gas Processing Symposium, H.E. Alfadala, G.V.R. Reklaitis, and M.M. El-Halwagi, Editors. 2009, Elsevier: Amsterdam. p. 423-433.Google Scholar

  • [88] R. Guettel and T. Turek, Comparison of different reactor types for low temperature Fischer-Tropsch synthesis: A simulation study. Chemical Engineering Science, 2009. 64(5): p. 955-964.CrossrefGoogle Scholar

  • [89] H. Schulz, Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 1999. 186(1-2): p. 3-12.Google Scholar

  • [90] W. Chu, et al., Cobalt species in promoted cobalt aluminasupported Fischer-Tropsch catalysts. Journal of Catalysis, 2007. 252(2): p. 215-230.Google Scholar

  • [91] Y. Zhang, H. Xiong, K. Liew, and J. Li, Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2005. 237(1-2): p. 172-181.Google Scholar

  • [92] S.S. Itkulovaa, G.D. Zakumbaevaa, R.S. Arzumanovab, and V.A. Ovchinnikovb, Production of hard hydrocarbons from synthesis-gas over co-containing supported catalysts. Fischer-Tropsch Synthesis, Catalysts and Catalysis, 2006. 163: p. 75.Google Scholar

  • [93] H. Schulz, Comparing Fischer-Tropsch synthesis on iron-and cobalt catalysts: The dynamics of structure and function. Studies in surface science and catalysis, 2007. 163: p. 177-199.Google Scholar

  • [94] G. Jacobs, et al., Fischer-Tropsch synthesis: influence of support on the impact of co-fed water for cobalt-based catalysts. Fischer-Tropsch Synthesis, Catalysts and Catalysis, 2006. 163: p. 217.Google Scholar

About the article

Received: 2017-03-09

Accepted: 2017-11-20

Published Online: 2017-12-29

Citation Information: Biofuels Engineering, Volume 2, Issue 1, Pages 11–31, ISSN (Online) 2084-7181, DOI: https://doi.org/10.1515/bfuel-2017-0002.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in