Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal !

Biofuels Engineering

1 Issue per year

Open Access
See all formats and pricing
More options …

Cobalt Catalysts Preparation and Characterization over Alumina Support for Fischer Tropsch Synthesis

Nima Mohammadi Taher
  • Department of Materials Engineering, Faculty of Engineering, University of Tabriz, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maedeh Mahmoudi / Seyyede Shahrzad Sajjadivand
  • Department of Materials Engineering, Faculty of Engineering, University of Tabriz, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/bfuel-2017-0004


An investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized.

Keywords : Fischer-Tropsch Synthesis; Biodiesel; Narrow pore alumina support; Cobalt catalyst; Ethanol


  • [1] D. Dasgupta and T. Wiltowski, Enhancing gas phase Fischer-Tropsch synthesis catalyst design. Fuel, 2011. 90(1): p. 174-181.Web of ScienceGoogle Scholar

  • [2] D. Tristantini, S. Lögdberg, B. Gevert, Ø. Borg, and A. Holmen, The effect of synthesis gas composition on the Fischer-Tropsch synthesis over Co/Ɣ-Al2O3 and Co-Re/Ɣ-Al2O3 catalysts. Fuel Processing Technology, 2007. 88(7): p. 643-649.CrossrefGoogle Scholar

  • [3] Hessam Jahangiri, James Bennett, Parvin Mahjoubi, Karen Wilson, and S. Gu, A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. The Royal Society of Chemistry, 2014.Google Scholar

  • [4] N. Moazami, et al., Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2: Hydrocarbon production. Fuel, 2015. 154: p. 140-151.Google Scholar

  • [5] N. Moazami, et al., Catalytic performance of cobalt-silica catalyst for Fischer-Tropsch synthesis: Effects of reaction rates on eflciency of liquid synthesis. Chemical Engineering Science, 2015. 134: p. 374-384.Google Scholar

  • [6] N. Moazami, et al., Mathematical Modeling and Performance Study of Fischer-tropsch Synthesis of Liquid Fuel over Cobaltsilica. Energy Procedia, 2015. 75: p. 62-71.Google Scholar

  • [7] H. Mahmoudi, et al., A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation, in Biofuels Engineering. 2017. p. 11.Google Scholar

  • [8] O. Doustdar, M.L. Wyszynski, A. Tsolakis, and H. Mahmoudi, Bio-Ketones from lignocellulosic biomass: Experimental investigation on fuel properties, combustion and emission characteristics of cyclopentanone blend with diesel in compression ignition engine. Combustion Engines PTNSS, 2017.Google Scholar

  • [9] O. Doustdar, M.L.Wyszynski, H.Mahmoudi, and A. Tsolakis, Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value, in IOP Conference Series: Materials Science and Engineering. 2016. p. 012092.Google Scholar

  • [10] M.R. Hamedi, A. Tsolakis, and J.M. Herreros, Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis. 2014, SAE International.Google Scholar

  • [11] S. Zeraati Rezaei, et al., Investigation of two-stage splitinjection strategies for a Dieseline fuelled PPCI engine. Fuel, 2013. 107: p. 299-308.Google Scholar

  • [12] M. Bogarra-Macias, et al., Performance of a drop-in biofuel emulsion on a single-cylinder research diesel engine. Combustion Engines PTNSS, 2016. 166: p. 9-16.Google Scholar

  • [13] S. Zeng, Y. Du, H. Su, and Y. Zhang, Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer-Tropsch synthesis. Catalysis Communications, 2011. 13(1): p. 6-9.CrossrefWeb of ScienceGoogle Scholar

  • [14] B. Ernst, L. Hilaire, and A. Kiennemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999. 50(2): p. 413-427.CrossrefGoogle Scholar

  • [15] H. Mahmoudi, Perfomance of cobalt-based eggshell catalyst in low temperature Fischer tropsch synthesis process to produce long-chain hydrocarbons from synthesis gas utilizing fixed-bed reactor technology, in School of Mechanical Engineering. 2015, The University of Birmingham.Google Scholar

  • [16] M.H. Rafiq, H.A. Jakobsen, R. Schmid, and J.E. Hustad, Experimental studies and modeling of a fixed bed reactor for Fischer- Tropsch synthesis using biosyngas. Fuel Processing Technology, 2011. 92(5): p. 893-907.CrossrefGoogle Scholar

  • [17] J.H. Yang, et al., Mass transfer limitations on fixed-bed reactor for Fischer-Tropsch synthesis. Fuel Processing Technology, 2010. 91(3): p. 285-289.CrossrefGoogle Scholar

  • [18] E. van Steen and M. Claeys, Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process. Chemical Engineering & Technology, 2008. 31(5): p. 655-666.CrossrefGoogle Scholar

  • [19] R. Guettel and T. Turek, Comparison of different reactor types for low temperature Fischer-Tropsch synthesis: A simulation study. Chemical Engineering Science, 2009. 64(5): p. 955-964.CrossrefWeb of ScienceGoogle Scholar

  • [20] Y.H. Kim, K.-W. Jun, H. Joo, C. Han, and I.K. Song, A simulation study on gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process optimization. Chemical Engineering Journal, 2009. 155(1): p. 427-432.Google Scholar

  • [21] R.B. Anderson, The Fischer Tropsch Synthesis. Department of Chemical Engineering: McMaster University, Hamilton, Ontario, Canada. Google Scholar

  • [22] M.E. Dry, The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002. 71(3): p. 227-241.Google Scholar

  • [23] A.R. de la Osa, A. De Lucas, A. Romero, J.L. Valverde, and P. Sánchez, Influence of the catalytic support on the industrial Fischer-Tropsch synthetic diesel production. Catalysis Today, 2011. 176(1): p. 298-302.Web of ScienceGoogle Scholar

  • [24] Ø. Borg, et al., Fischer-Tropsch synthesis over un-promoted and Re-promoted Ɣ-Al2O3 supported cobalt catalysts with different pore sizes. Catalysis Today, 2009. 142(1-2): p. 70-77.Web of ScienceGoogle Scholar

  • [25] Y. Zhang, H. Xiong, K. Liew, and J. Li, Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts. Journal of Molecular Catalysis A: Chemical, 2005. 237(1): p. 172-181.Google Scholar

  • [26] H. Xiong, Y. Zhang, S. Wang, and J. Li, Fischer-Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catalysis Communications, 2005. 6(8): p. 512-516. CrossrefGoogle Scholar

  • [27] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997. 161(1): p. 59-78.Google Scholar

  • [28] E. Iglesia, S.L. Soled, and R.A. Fiato, Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 1992. 137(1): p. 212-224.Google Scholar

  • [29] M. Kraum and M. Baerns, Fischer-Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance. Applied Catalysis A: General, 1999. 186(1): p. 189-200.Google Scholar

  • [30] A. Jean-Marie, A. Griboval-Constant, A.Y. Khodakov, and F. Diehl, Cobalt supported on alumina and silica-doped alumina: Catalyst structure and catalytic performance in Fischer-Tropsch synthesis. Comptes Rendus Chimie, 2009. 12(6-7): p. 660-667.CrossrefWeb of ScienceGoogle Scholar

  • [31] Ø. Borg, et al., Fischer-Tropsch synthesis over Ɣ-aluminasupported cobalt catalysts: Effect of support variables. Journal of Catalysis, 2007. 248(1): p. 89-100.Google Scholar

About the article

Received: 2017-08-10

Accepted: 2017-12-05

Published Online: 2017-12-29

Citation Information: Biofuels Engineering, Volume 2, Issue 1, Pages 51–61, ISSN (Online) 2084-7181, DOI: https://doi.org/10.1515/bfuel-2017-0004.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in