Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bibliothek Forschung und Praxis

Ed. by Bonte, Achim / Degkwitz, Andreas / Horstmann, Wolfram / Kaegbein, Paul / Keller, Alice / Kellersohn, Antje / Lux, Claudia / Marwinski, Konrad / Mittler, Elmar / Rachinger, Johanna / Seadle, Michael / Vodosek, Peter / Vogt, Hannelore / Vonhof, Cornelia

Print
ISSN
0341-4183
See all formats and pricing
More options …
Volume 43, Issue 1

Issues

Methods to Evaluate Lifecycle Models for Research Data Management

Evaluationsmethoden für Lebenszyklusmodelle im Kontext des Forschungsdaten-Managements

Tobias Weber
  • Corresponding author
  • Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstr. 1, D-85748 Garching bei München, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter Kranzlmüller
  • Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstr. 1, D-85748 Garching bei München, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-05 | DOI: https://doi.org/10.1515/bfp-2019-2016

Abstract

Lifecycle models for research data are often abstract and simple. This comes at the danger of oversimplifying the complex concepts of research data management. The analyses of 90 different lifecycle models lead to two approaches to assess the quality of these models. While terminological issues make direct comparisons of models hard, an empirical evaluation seems possible.

Zusammenfassung

Lebenszyklus-Modelle für Forschungsdaten sind oft abstrakt und einfach. Hierin liegt die Gefahr, ein zu einfaches Bild der komplexen Forschungsdatenlandschaft zu zeichnen. Die Analyse von 90 dieser Modelle führt zu zwei Ansätzen, die Qualität dieser Modelle zu bewerten. Die Uneinheitlichkeit in der Terminologie erschwert einen direkten Vergleich zwischen den Modellen, wohingegen eine empirische Evaluierung der Modelle in Reichweite liegt.

Keywords: Research data management; lifecycle models; evaluation

Schlagwörter: Forschungsdatenmanagement; Lebenszyklus-Modelle; Evaluation

References

  • Faundeen, John; Burley, Thomas; Carlino, Jennifer; Govoni, David; Henkel, Heather; Holl, Sally; Hutchison, Vivian; Martìn, Elizabeth; Montgomery, Ellyn; Ladino, Cassandra (2014): The United States geological survey science data lifecycle model. Tech. rep. US Geological Survey. Accessible via DOI:10.3133/ofr20131265, accessed 2018-11-26.Google Scholar

  • Higgins, Sarah (2008): The DCC curation lifecycle model. In: The International Journal of Digital Curation, 3 (1), 134–40.Google Scholar

  • Hodge, Gail M. (2000): Best practices for digital archiving – an information life cycle approach. In: D-Lib Magazine, 6 (1). Accessible via http://www.dlib.org/dlib/january00/01hodge.html.

  • ICPSR (2012): Guide to social science data preparation and archiving: best practice throughout the data life cycle. Accessible via http://www.icpsr.umich.edu/icpsrweb/content/deposit/guide.

  • Hamish, James; Ruusalepp, Raivo; Anderson, Sheila; Pinfield, Stephen (2003): Feasibility and requirements study on preservation of e-prints. Tech. rep. Joint Information Systems Committees (JISC). Accessible via http://www.sherpa.ac.uk/documents/feasibility_eprint_preservation.pdf.

  • Knight, Gareth (2006): A lifecycle model for an e-print in the institutional repository. Accessible via http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.1916.

  • Kuberek, Monika (2013): Die Forschungsdaten-Infrastruktur der TU Berlin. In: Bibliotheksdienst, 47 (11), 833–46. DOI:10.1515/bd-2013-0096.Google Scholar

  • Michener, William K.; Jones, Matthew B. (2012): Ecoinformatics: supporting ecology as a data-intensive science. In: Trends in ecology & evolution, 27 (2), 85–93. DOI:10.1016/j.tree.2011.11.016.Google Scholar

  • Möller, Knud (2013): Lifecycle models of data-centric systems and domains. In: Semantic Web, 4 (1), 67–88. DOI:10.3233/SW-2012-0060.Google Scholar

  • Peng, Ge; Ritchey, Nancy; Casey, Kenneth; Kearns, Edward; Privette, Jeffrey; Saunders, Drew; Jones, Philip; Maycock, Tom; Ansari, Steve (2016): Scientific stewardship in the open data and big data era (Roles and responsibilities of stewards and other major product stakeholders). In: D-Lib Magazine, 22 (5/6). DOI:10.1045/may2016-peng.Google Scholar

  • Perrier, Laure; Blondal, Erik; Ayala, A. Patricia; Dearborn, Dylanne; Kenny, Tim; Lightfoot, David; Reka, Roger; Thuna, Mindy; Trimble, Leanne; MacDonald, Heather (2017): Research data management in academic institutions: A scoping review. In: PLOS ONE, 12 (5), 1–14. DOI: 10.1371/journal.pone.0178261.Google Scholar

  • Pouchard, Line (2016): Revisiting the data lifecycle with big data curation. In: International Journal of Digital Curation, 10 (2), 176–92.Google Scholar

  • Sarmiento Soler, Alejandra; Ort, Mara; Steckel, Juliane; Nieschulze, Jens (2016): An introduction to data management. Accessible via DOI:10.5281/zenodo.46715.Google Scholar

  • Sinaeepourfard, Amir; Garcia, Jordi; Masip-Bruin, Xavier; Marìn-Torder, Eva (2016a): A comprehensive scenario agnostic data lifecycle model for an efficient data complexity management. In: Proceedings of the 2016 IEEE 12th International Conference on e-Science, 276–81.Google Scholar

  • Sinaeepourfard, Amir; Garcia, Jordi; Masip-Bruin, Xavier; Marìn-Torder, Eva (2016b): Towards a Comprehensive Data Lifecycle Model for Big Data Environments. In: Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT ‘16), 100–06. DOI: 10.1145/3006299.3006311.Google Scholar

  • Veenstra, Anne Fleur van; van den Broek, Tijs (2015): A community-driven open data lifecycle model based on literature and practice. In: Case Studies in e-Government 2.0: Changing Citizen Relationships, ed. by Imed Boughzala, Marijn Janssen and Saїd Assar. Springer International Publishing, 183–98. DOI:10.1007/978-3-319-08081-9_11.Google Scholar

  • Wallis, Jillian C.; Pepe, Alberto; Mayernik, Matthew S.; Borgman, Christine L. (2008): An exploration of the life cycle of e-science collaborator data. Accessible via http://hdl.handle.net/2142/15122.

  • Weber, Tobias; Kranzlmüller, Dieter (2018): How FAIR can you get? Image retrieval as a use case to calculate FAIR metrics. In: Proceedings of the 2018 IEEE 14th International Conference on e-Science, 114–24. DOI:10.1109/eScience.2018.00027.Google Scholar

  • Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan; Appleton, Gabrielle; Axton, Myles; Baak, Arie; Blomberg, Niklas; Boiten, Jan-Willem; da Silva Santos, Luiz Bonino; Bourne, Philip E and others (2016): The FAIR guiding principles for scientific data management and stewardship. In: Scientific data, (3). DOI:10.1038/sdata.2016.18.Google Scholar

  • Wittenburg, Peter; Strawn, George (2018): Common patterns in revolutionary infrastructures and data. Accessible via https://www.rd-alliance.org/sites/default/files/Common_Patterns_in_Revolutionising_Infrastructures-final.pdf.

About the article

Tobias Weber

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstr. 1, D-85748 Garching bei München

Dieter Kranzlmüller

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstr. 1, D-85748 Garching bei München


Published Online: 2019-04-05

Published in Print: 2019-04-03


Citation Information: Bibliothek Forschung und Praxis, Volume 43, Issue 1, Pages 75–81, ISSN (Online) 1865-7648, ISSN (Print) 0341-4183, DOI: https://doi.org/10.1515/bfp-2019-2016.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in