Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Influence of textural properties on biomineralization behavior of mesoporous bioactive glasses

Anil Kumar / Sevi Murugavel
Published Online: 2015-07-16 | DOI: https://doi.org/10.1515/bglass-2015-0002


A new method of calcination for the sol-gel derived bioactive glass sample has been developed to produce superior textural and bioactive properties. Based on this method, mesoporous 67.4 SiO2-25 Na2O-5 CaO- 2.6 P2O5 (mol.%) bioactive glasses (MBGs) have been synthesized through acid assisted sol-gel technique followed by evaporation induced self-assembly (EISA) process, commonly used for obtaining bioactive glasses. Moreover, the use of microwave irradiation has been compared with that of conventional heat treatment for a particular quaternary composition,which has allowed the homogeneous spatial distribution of heat and to obtain smaller, uniform pore sizes with high surface area. The distinctions between the two methods of calcination have been observed in the structural, morphology and textural characteristics. The superior textural characteristics have allowed the rapid dissolution of MBGs followed by development of nanocrystalline hydroxycarbonate apatite (HCA) layer. In vitro bioactive analyses on both MBGs have revealed a rapid formation HCA layer with distinct behavior on the biomineralization process. The difference in the behavior of biomineralization process is attributed to the kinetics of supersaturation of the biological medium.

Keywords: Bioactive glass; Microwave irradiation; Bioactivity; EISA; SBF


  • [1] Jones J.R., Gentleman E., Polak J., Bioactive glass scaffolds for bone regeneration, Elements, 2007, 3, 393-399 CrossrefWeb of ScienceGoogle Scholar

  • [2] Albrektsson T., Johansson C., Osteoinduction, osteoconduction and osseointegration, Eur Spine J., 2001, 10, S96-S101 Google Scholar

  • [3] Chen Q.Z., Thouas G.A., Fabrication and characterization of solgel derived 45S5 bioglass ceramics scaffolds, Acta. Biomater., 2011, 7, 3616-3626 CrossrefGoogle Scholar

  • [4] Chen Q.Z., Xu J.L., Yu L.G., Fang X.Y., Khor K.A., Spark plasma sintering of sol-gel derived 45S5 bioglass ceramics: mechanical properties and biocompatibility evaluation, Mater. Sci. Eng. C, 2012, 32, 494-502 CrossrefGoogle Scholar

  • [5] Pirayesh H., Nychka J.A., Sol-gel synthesis of bioactive glassceramics 45S5 and its in vitro dissolution and mineralization behavior, J. Am. Ceram. Soc., 2013, 96, 1643-1650 Web of ScienceCrossrefGoogle Scholar

  • [6] Wu C., Luo Y., Cuniberti G., Xia Y., Gelinsky M., Three dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability, Acta. Biomater., 2011, 7, 2644-2650 Web of ScienceCrossrefGoogle Scholar

  • [7] Fu Q., Rahaman M.N., Bal B.S., Brown R.F., Day D.E., Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique, Acta. Biomater., 2008, 4, 1854-1864 CrossrefWeb of ScienceGoogle Scholar

  • [8] Pena J., Roman J., Cabanas M.V., Vallet-Regi M., An alternative technique to shape Scaffoldswith hierarchical porosity at physiological temperature, Acta. Biomater., 2010, 6,1288-1296 Web of ScienceCrossrefGoogle Scholar

  • [9] Mallick K.K., Freeze casting of porous bioactive glass and bioceramics, J. Am. Chem. Soc., 2009, 92 [S1], S85-S94 Google Scholar

  • [10] Yan X., Huang X., Yu C., Deng H., Wang Y., Zhong Z., Qiao S., Lu G., Zhao D., The in-vitro bioactivity of mesoporous bioactive glasses, Biomater., 2006, 27, 3396-3403 CrossrefGoogle Scholar

  • [11] Xia W., Chang J., Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system, J. Cont. Rel., 2006, 110, 522-530 Google Scholar

  • [12] Yun H.S., Kim S.E., Hyun Y.T., Heo S.J., Shin J.W., Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration, J. Biomed. Mater. Res. B: Appl. Biomater., 2008, 87B, 374-380 CrossrefGoogle Scholar

  • [13] Yun H.S., Kim S.E., Hyeon Y.T., Design and preparation of bioactive glasses with hierarchical pore networks, Chem. Comm., 2007, 21, 2139-2141 CrossrefGoogle Scholar

  • [14] Li X., Wang X., Chen H., Jiang P., Dong X., Si J., Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 contemplated approach, Chem. Mater., 2007, 19, 4322- 4326 CrossrefWeb of ScienceGoogle Scholar

  • [15] Zhu Y., Wu C., Ramaswamy Y., Kockrick E., Simon P., Kaskel S., Zreiqat H., Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering, Micropor. Mesopor., 2008, 112, 494-503 CrossrefGoogle Scholar

  • [16] Brinker C.J., Lu Y., Sellinger A., Fan H., Evaporation-induced selfassembly: nanostructures made easy, Adv. Mater., 1999, 11, 579-585 CrossrefGoogle Scholar

  • [17] Shih C.C., Chien C.S., Kung J.C., Chen J.C., Chang S.S., Lu P.S., Shih C.J., Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly, Appl. Surf. Sci., 2013, 264, 105-110 Web of ScienceGoogle Scholar

  • [18] Li X., Shi J., Dong X., Zhang L., Zeng H., A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior, J. Biomed. Mater. Res. A, 2008, 84A, 84-91 Web of ScienceGoogle Scholar

  • [19] Alcaide M., Portoles P., Noriega A.L., Arcos D., Vallet-Regi M., Portoles M.T., Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material, Acta. Biomater., 2010, 6, 892-899 CrossrefWeb of ScienceGoogle Scholar

  • [20] Noriega A.L., Arcos D., Barba I.I., Sakamoto Y., Terasaki O., Vallet-Regi M., Ordered mesoporous bioactive glasses for bone tissue regeneration, Chem. Mater., 2006, 18, 3137-3144 CrossrefGoogle Scholar

  • [21] Yan X.X., Deng H.X., Huang X.H., Lu G.Q., Qiao S.Z., Zhao D.Y., Yu C.Z., Mesoporous bioactive glasses I. synthesis and structural characterization, J. Non-Cryst. Solids, 2005, 351, 3209-3217 Google Scholar

  • [22] Hoppe A., Guldel N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomater., 2011, 32, 2757-2774 CrossrefGoogle Scholar

  • [23] Vaid C., Murugavel S., Alkali oxide containing mesoporous bioactive glasses: synthesis, characterization and in vitro bioactivity, Mater. Sci. Eng C, 2013, 33, 959-968 CrossrefWeb of ScienceGoogle Scholar

  • [24] Vaid C., Murugavel S., Kashayap R., Tandon R.P., Synthesis and in vitro bioactivity of surfactant templated mesoporous sodium silicate glasses, Micropor. Mesopor. Mater., 2012, 159, 17-23 Google Scholar

  • [25] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomater., 2006, 27, 2907-2915 CrossrefGoogle Scholar

  • [26] Aguiar H., Serra J., Gonzalez P., Leon B., Structural study of sol– gel silicate glasses by IR and Raman spectroscopies, J. Non- Cryst. Solids, 2009, 355, 475-480 Google Scholar

  • [27] Bhambhani M.R., Cutting P.A., Sing K.S.W., Turk D.H., Analysis of nitrogen adsorption isotherms on porous and nonporous silicas by the BET and as methods, J. Colloid Interface Sci., 1972, 308, 109-117. Google Scholar

  • [28] Horcajada P., Ramila A., Boulahya K., Gonzalez-Calbet J., Vallet- Regi M., Bioactivity in ordered mesoporous materials, Solid State Sci., 2004, 6, 1295-1300. CrossrefGoogle Scholar

  • [29] Du Min Q., Bian Z., Jiang H., Greenspan D.C., Burwell A.K., Zhong J., Tai B.J., Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (novamin) for the treatment of dentin hypersensitivity, Am. J. Dent., 2008, 21, 210-214. Google Scholar

  • [30] Weiner S., Dove P.M., An overview of biomineralization processes and the problem of the vital effect, Rev. Mineral. Geochem., 2003, 54, 1-29 CrossrefGoogle Scholar

  • [31] Garcia A., Cicuendez M., Barba I.I., Arcos D., Vallet-Regi M., Essential role of calcium phosphate heterogeneities in 2Dhexagonal and 3D-cubic SiO2-CaO-P2O5 mesoporous bioactive glasses, Chem. Mater., 2009, 21, 5474-5484 Google Scholar

  • [32] Yan H., Zhang K., Blandford C.F., Francis L.F., Stein A., In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally orderedmacroporous structure, Chem. Mater., 2001, 13, 1374-1382 CrossrefGoogle Scholar

  • [33] Salinas A.J.,Martin A.I., Vallet-Regi M., Bioactivity of three CaO– P2O5–SiO2 sol-gel glasses, J. Biomed. Mater. Res. A, 2002, 61, 524-532 CrossrefGoogle Scholar

About the article

Received: 2015-01-08

Accepted: 2015-04-12

Published Online: 2015-07-16

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0002.

Export Citation

© 2015 Anil Kumar and Sevi Murugavel. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anil Kumar, Sevi Murugavel, Anusha Aditya, and Aldo R. Boccaccini
Journal of Materials Chemistry B, 2017

Comments (0)

Please log in or register to comment.
Log in