Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic

Francesco Baino
  • Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chiara Vitale-Brovarone
  • Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-17 | DOI: https://doi.org/10.1515/bglass-2015-0003


In the last few years, optimal fixation of orthopaedic implants evolved to preserve host bone and enhance tissue integration by surface modifications, including the use of coatings with bioactive ceramics. In this work, we fabricated a novel bone-like porous bioactive glass-ceramic coating on curved alumina substrates; good joining between the two components was possible due to the interposition of a glass-derived dense interlayer. The mechanical properties of the porous glass-ceramic, which mimics the 3-D pore architecture of cancellous bone, are adequate for load-bearing applications (compressive strength of 19 MPa and fracture energy around 6.5×10−4 J mm−3, with a total porosity of 62 vol.%). In vitro bioactive behaviour was investigated by testing the samples in simulated body fluid and by evaluating the apatite formation on the surface and pore struts of the trabecular coating, which is a key precondition for in vivo osteointegration. The concepts disclosed in the present study could find interesting application in the context of orthopaedic implants, with particular reference to full-ceramic acetabular cups for hip joint prosthesis.

Keywords: Bioactive glass; Coating; Scaffold; Bioceramic; Hip joint prosthesis


  • [1] Hench L.L., Bioceramics, J. Am. Ceram. Soc., 1998, 81, 1705- 1728. CrossrefGoogle Scholar

  • [2] Hench L.L., Chronology of Bioactive Glass Development and Clinical Applications, N. J. Glass Ceram., 2013, 3, 67-73. CrossrefGoogle Scholar

  • [3] Rahaman M.N., Yao A., Sonny Bal B., Garino J.P., Ries N.D., Ceramics for Prosthetic Hip and Knee Joint Replacement, J. Am. Ceram. Soc., 2007, 90, 1965-1988. CrossrefGoogle Scholar

  • [4] Marshall D.A., Pykerman K., Werle J., Lorenzetti D., Wasylak T., Noseworthy T., et al., Hip Resurfacing Versus Total Hip Arthroplasty: A Systematic Review Comparing Standardized Outcomes, Clin. Orthop. Relat. Res., 2014, 472, 2217-2230. Web of ScienceGoogle Scholar

  • [5] Verné E., Bioactive glass and glass-ceramic coatings, In: Jones J.R., Clare A.G. (Eds.), Bio-glasses: an introduction, Wiley, Chichester (UK), 2012. Google Scholar

  • [6] Vitale Brovarone C., Verné E., Krajewski A., Ravaglioli A., Graded Coatings on Ceramic Substrates for Biomedical Applications, J. Eur. Ceram. Soc., 2001, 21, 2855-2862. CrossrefGoogle Scholar

  • [7] Lee T.M., Chang E., Wang B.C., Yang C.Y., Characteristics of Plasma-Sprayed Bioactive Glass Coatings on Ti-6Al-4V Alloy: An in Vitro Study, Surf. Coatings Technol., 1996, 79, 170-177. CrossrefGoogle Scholar

  • [8] Wang X., Li X., Onuma K., Ito A., Sogo Y., Kosuge K., et al., Mesoporous Bioactive Glass Coatings on Stainless Steel for Enhanced Cell Activity, Cytoskeletal Organization and AsMg Immobilization, J. Mater. Chem., 2010, 20, 6437-6445. Web of ScienceCrossrefGoogle Scholar

  • [9] Mardare C.C., Mardare A.I., Fernandes J.R.F., Joanni E., Pina S.C.A., Fernandes M.H.V., et al., Deposition of Bioactive Glass- Ceramic Thin Films by RF Magnetron Sputtering, J. Eur. Ceram. Soc. 2003, 23, 1027-1030. CrossrefGoogle Scholar

  • [10] Boccaccini A.R., Keim S., Ma R., Li Y., Zhitomirsky I., Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 2010, 7, S581-S613. CrossrefGoogle Scholar

  • [11] Fiorilli S., Baino F., Cauda V., Crepaldi M., Vitale-Brovarone C., Demarchi D., et al., Electrophoretic Deposition of Mesoporous Bioactive Glass on Glass-Ceramic Foam Scaffolds for Bone Tissue Engineering, J. Mater. Sci.: Mater. Med., 2015, 26, art.21, pp.12. Web of ScienceCrossrefGoogle Scholar

  • [12] Baino F., Vitale-Brovarone C., Feasibility of Glass-Ceramic Coatings on Alumina Prosthetic Implants by Airbrush Spraying Method, Ceram. Int., 2015, 41, 2150-2159. Web of ScienceGoogle Scholar

  • [13] Verné E., Vitale-Brovarone C., Robiglio L., Baino F., Single-piece ceramic prosthesis elements, Patent no. EP2152328. Google Scholar

  • [14] Vitale-Brovarone C., Baino F., Tallia F., Gervasio C., Verné E., Bioactive Glass-Derived Trabecular Coating: A Smart Solution for Enhancing Osteointegration of Prosthetic Elements, J.Mater. Sci. Mater. Med., 2012, 23, 2369-2380. Web of ScienceCrossrefGoogle Scholar

  • [15] Chen Q., Baino F., Pugno N.M., Vitale-Brovarone C., Bonding Strength of Glass-Ceramic Trabecular-Like Coatings to Ceramic Substrates for Prosthetic Applications,Mater. Sci. Eng. C, 2013, 33, 1530-1538. Web of ScienceCrossrefGoogle Scholar

  • [16] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglassr- Derived Glass-Ceramic Scaffolds for Bone Tissue Engineering, Biomaterials, 2006, 27, 2414-2425. CrossrefGoogle Scholar

  • [17] Vitale-Brovarone C., Verné E., Robiglio L., Appendino P., Bassi F., Martinasso G., et al., Development of Glass-Ceramic Scaffolds for Bone Tissue Engineering: Characterisation, Proliferation of Human Osteoblasts and Nodule Formation, Acta Biomater., 2007, 3, 199-208. Web of ScienceCrossrefGoogle Scholar

  • [18] Vitale-Brovarone C., Baino F., Verné E., High Strength Bioactive Glass-Ceramic Scaffolds for Bone Regeneration, J. Mater. Sci. Mater. Med., 2009, 20, 643-653. CrossrefGoogle Scholar

  • [19] Baino F., Tallia F., Novajra G., Minguella J., Montealegre M.A., Korkusuz F., et al., Novel Bone-Like Porous Glass Coatings on Al2O3 Prosthetic Substrates, Key Eng. Mater., 2015, 631, 236- 240. Google Scholar

  • [20] Kenesei P., Kadar C., Rajkovits Z., Lendvai J., The Influence of Cell-Size Distribution on the Plastic Deformation in Metal Foams, Scripta Mater., 2004, 50, 295-300. CrossrefGoogle Scholar

  • [21] Kokubo T., Takadama H., How Useful is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27, 2907-2915. CrossrefGoogle Scholar

  • [22] Rice R., Mechanical Properties, In: Schaufer H., Colombo P., (Eds.), Cellular ceramics: structure, manufacturing, properties and applications, Wiley, New York, 2005. Google Scholar

  • [23] Hench L.L., Bioactive Ceramics, Ann. N.Y. Acad. Sci., 1988, 523, 54-57. Google Scholar

  • [24] Andersson O.H., Liu G., Karlsson K.H., Juhanoja J., In Vivo Behaviour of Glasses in the SiO2–Na2O–CaO–P2O5– Al2O3–B2O3 System, J. Mater. Sci.: Mater. Med., 1990, 1, 219-227. CrossrefGoogle Scholar

  • [25] Vormann J., Magnesium: Nutrition and Metabolism, Mol. Aspects Med., 2003, 24, 27-37. CrossrefGoogle Scholar

  • [26] Kim C.Y., Lee J.W., Surface Bio-Modification of TitaniumImplants by an Enamel Process, J. Ceram. Process. Res., 2005, 6, 338- 344. Google Scholar

  • [27] Kokubo T., Ito S., Sakka S., Yamamuro T., Formation of a High Strength Bioactive Glass-Ceramic in the System MgO–CaO– SiO2–P2O5, J. Mater. Sci., 1986, 21, 536-540. CrossrefGoogle Scholar

  • [28] Suchanek W., Yashima M., Kakihana M., Yoshimura M., Rhenanite (b-NaCaPO4) as Weak Interphase for Hydroxyapatite Ceramics, J. Eur. Ceram. Soc., 1998, 18, 1923-1929. CrossrefGoogle Scholar

  • [29] Jalota S., Bhaduri S.B., Tas A.C., A New Rhenanite (b-NaCaPO4) and Hydroxyapatite Biphasic Biomaterial for Skeletal Repair, J. Biomed. Mater. Res. B, 2007, 80, 304-316. CrossrefGoogle Scholar

  • [30] Karageorgiou V., Kaplan D., Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, 5474-5491. CrossrefGoogle Scholar

  • [31] Fu Q., Rahaman M.N., Bal B.S., Brown R.F., Day D.E., Mechanical and in Vitro performance of 13-93 Bioactive Glass Scaffolds Prepared by a Polymer Foam Replication Technique, Acta Biomater., 2008, 4, 1854-1864. Web of ScienceGoogle Scholar

  • [32] Baino F., Ferraris M., Bretcanu O., Verné E., Vitale-Brovarone C., Optimization of Composition, Structure and Mechanical Strength of Bioactive Glass-Ceramic Scaffolds for Bone Substitution, J. Biomater. Appl., 2013, 27, 872-890. CrossrefWeb of ScienceGoogle Scholar

  • [33] Baino F., Vitale-Brovarone C., Mechanical Properties and Reliability of Glass-Ceramic Foam Scaffolds for Bone Repair, Mater.Lett., 2014, 118, 27-30. CrossrefGoogle Scholar

  • [34] Kim H.W., Knowles J.C., Kim H.E., Hydroxyapatite Porous Scaffolds Engineered with Biological Polymer Hybrid Coating for Antibiotic Vancomycin Release, J. Mater. Sci. Mater. Med., 2005, 16, 189-195. CrossrefGoogle Scholar

  • [35] Vitale-Brovarone C., Ciapetti G., Leonardi E., Baldini N., Bretcanu O., Verné E., et al., Resorbable Glass-Ceramic Phosphate- Based Scaffolds for Bone Tissue Engineering: Synthesis, Properties and in Vitro Effects on Human Marrow Stromal Cells, J. Biomater. Appl., 2011, 26, 465-489. Web of ScienceCrossrefGoogle Scholar

  • [36] Kaysinger K.K., Ramp W.K., Extracellular pH Modulates the Activity of Cultured Human Osteoblasts, J. Cell. Biochem., 1998, 68, 83-89. CrossrefGoogle Scholar

  • [37] Liu X., Rahaman M.N., Hilmas G.E., Sonny Bal B., Mechanical Properties of Bioactive Glass (13-93) Scaffolds Fabricated by Robotic Deposition for Structural Bone Repair, Acta Biomater, 2013, 9, 7025-7034. Google Scholar

About the article

Received: 2015-02-06

Accepted: 2015-04-07

Published Online: 2015-07-17

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0003.

Export Citation

© 2015 Francesco Baino and Chiara Vitale-Brovarone. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Francesco Baino, Maria Angeles Montealegre, Joaquim Minguella-Canela, and Chiara Vitale-Brovarone
Coatings, 2019, Volume 9, Number 6, Page 369
Shengxiang Jiang, Yin Zhang, Yan Shu, Zhenning Wu, Weijing Cao, and Wenxin Huang
Biomedical Materials, 2017, Volume 12, Number 2, Page 025017
Francesco Baino, Maria Angeles Montealegre, Gissur Orlygsson, Giorgia Novajra, and Chiara Vitale-Brovarone
Journal of Materials Science, 2017, Volume 52, Number 15, Page 9115
Francesco Baino, Joaquim Minguella, Nicholas Kirk, Maria Angeles Montealegre, Cosima Fiaschi, Feza Korkusuz, Gissur Orlygsson, and Vitale-Brovarone Chiara
Ceramics International, 2016, Volume 42, Number 6, Page 6833
Francesco Baino, Giorgia Novajra, and Chiara Vitale-Brovarone
Frontiers in Bioengineering and Biotechnology, 2015, Volume 3

Comments (0)

Please log in or register to comment.
Log in